Cyborg | Designer-Babies | Futurism | Futurist | Immortality | Longevity | Nanotechnology | Post-Human | Singularity | Transhuman

Caribbean – Wikitravel

 Caribbean  Comments Off on Caribbean – Wikitravel
Jun 212016


The islands of the Caribbean Sea or West Indies are an extensive archipelago in the far west of the Atlantic Ocean, mostly strung between North and South America. They’ve long been known as a resort vacation destination for honeymooners and retirees, but a small movement toward eco-tourism and backpacking has started to open up the Caribbean to more independent travel. With year-round good weather (with the occasional but sometimes serious exception of hurricane season in the late summer and early fall), promotional air fares from Europe and North America, and hundreds of islands to explore, the Caribbean offers something for almost everyone.

The Caribbean islands were first inhabited by the Arawak Indians, then were invaded by a more aggressive tribe, the Caribs. Unfortunately, neither could appreciate their victory forever, although the Arawaks may have had a quiet reign of nearly two millenia. Then the Spanish, Portuguese, Dutch, French, Danish, and British arrived, after which the Carib population steeply declined due to various factors. The islands have known many historic battles and more than a few pirate stories.

Cuba, Dominican Republic, Haiti, Jamaica, Puerto Rico and the Cayman Islands, often grouped as Greater Antilles, are by far the largest countries in the area and the most visited by travellers. In the north is the Lucayan Archipelago, which includes The Bahamas and the Turks and Caicos Islands. The Caribbean also includes the Lesser Antilles, a group of much smaller islands to the east. Further to the west and south, there are various less frequently visited islands that belong to Central and South American countries.

The Lesser Antilles can be further divided into three groups:

These countries are not part of the Greater or Lesser Antilles but are variously close to it, and are commonly associated with the Caribbean (e.g. members of CARICOM, the Caribbean Community).

Numerous companies offer cruises, charters, and boat tours in the Caribbean.

All of the Americas (with 16.3 killed per 100,000 population) suffer from homicide rates far above those in most of Asia (3.0), Europe (3.0) and Oceania (2.9) but some countries in the Caribbean feature in the highest murder rates in the world.

Most visitors are aware of the high rates of gun crime in the United States Virgin Islands (with 52.6) or Jamaica (39.3), but you might be unaware that even sleepy little Saint Kitts and Nevis (33.6) had a murder rate seven times greater than the scary old mainland USA in 2010!

The well policed Bahamas rang up a rate of (29.8), Trinidad and Tobago (28.3), Puerto Rico (26.5), Saint Vincent and the Grenadines (with a state Latin motto of “Pax et Justitia” or “Peace and Justice” had 25.6), Dominican Republic (22.1), Saint Lucia (21.6) and Dominica (21.1).

To put this in perspective, rates in more placid countries like Japan, Singapore, Indonesia, Hong Kong, Switzerland, Germany, Spain and New Zealand average well under a single person intentionally killed per 100,000 of their population each year.

Those of a nervous disposition when confronted by these kind of statistics may want to start researching a holiday in Martinique (2.7) or Cuba (4.2) since it’s rather uncomfortable to wear stab or bullet proof vests in these warm and humid climates of course, not to mention it make you look a bit of a prat…

WikiPedia:Caribbean Dmoz:Caribbean/

Go here to see the original:

Caribbean – Wikitravel

 Posted by at 11:15 pm  Tagged with:

 Nihilism  Comments Off on
Mar 122016

Nihilism ( or ; from the Latin nihil, nothing) is a philosophical doctrine that suggests the lack of belief in one or more reputedly meaningful aspects of life. Most commonly, nihilism is presented in the form of existential nihilism, which argues that life is without objective meaning, purpose, or intrinsic value.[1]Moral nihilists assert that morality does not inherently exist, and that any established moral values are abstractly contrived. Nihilism can also take epistemological or ontological/metaphysical forms, meaning respectively that, in some aspect, knowledge is not possible, or that reality does not actually exist.

The term is sometimes used in association with anomie to explain the general mood of despair at a perceived pointlessness of existence that one may develop upon realising there are no necessary norms, rules, or laws.[2] Movements such as Futurism and deconstruction,[3] among others, have been identified by commentators[who?] as “nihilistic”.

Nihilism is also a characteristic that has been ascribed to time periods: for example, Jean Baudrillard and others have called postmodernity a nihilistic epoch,[4] and some Christian theologians and figures of religious authority have asserted that postmodernity[5] and many aspects of modernity[3] represent a rejection of theism, and that such rejection of their theistic doctrine entails nihilism.

Nihilism has many definitions, and thus can describe philosophical positions that are arguably independent.

Metaphysical nihilism is the philosophical theory that concrete objects and physical constructs might not exist in the possible world, or that even if there exist possible worlds that contain some concrete objects, there is at least one that contains only abstract objects.

An extreme form of metaphysical nihilism is commonly defined as the belief that nothing exists as a correspondent component of the self-efficient world.[6] The American Heritage Medical Dictionary defines one form of nihilism as “an extreme form of skepticism that denies all existence.”[7] A similar position can be found in solipsism; however, the solipsist affirms whereas the nihilist would deny the self.[8] Both these positions are considered forms of anti-realism.[9]

Epistemological nihilism is a form of skepticism in which all knowledge is accepted as possibly untrue or unable to be known. Additionally, morality is seen as subjective or false.[10]

Mereological nihilism (also called compositional nihilism) is the position that objects with proper parts do not exist (not only objects in space, but also objects existing in time do not have any temporal parts), and only basic building blocks without parts exist, and thus the world we see and experience full of objects with parts is a product of human misperception (i.e., if we could see clearly, we would not perceive compositive objects).

This interpretation of existence must be based on resolution. The resolution with which humans see and perceive the “improper parts” of the world is not an objective fact of reality, but is rather an implicit trait that can only be qualitatively explored and expressed. Therefore, there is no arguable way to surmise or measure the validity of mereological nihilism. Example: An ant can get lost on a large cylindrical object because the circumference of the object is so large with respect to the ant that the ant effectively feels as though the object has no curvature. Thus, the resolution with which the ant views the world it exists “within” is a very important determining factor in how the ant experiences this “within the world” feeling.

Existential nihilism is the belief that life has no intrinsic meaning or value. With respect to the universe, existential nihilism posits that a single human or even the entire human species is insignificant, without purpose and unlikely to change in the totality of existence. The meaninglessness of life is largely explored in the philosophical school of existentialism.

Moral nihilism, also known as ethical nihilism, is the meta-ethical view that morality does not exist as something inherent to objective reality; therefore no action is necessarily preferable to any other. For example, a moral nihilist would say that killing someone, for whatever reason, is not inherently right or wrong.

Other nihilists may argue not that there is no morality at all, but that if it does exist, it is a human construction and thus artificial, wherein any and all meaning is relative for different possible outcomes. As an example, if someone kills someone else, such a nihilist might argue that killing is not inherently a bad thing, or bad independently from our moral beliefs, because of the way morality is constructed as some rudimentary dichotomy. What is said to be a bad thing is given a higher negative weighting than what is called good: as a result, killing the individual was bad because it did not let the individual live, which was arbitrarily given a positive weighting. In this way a moral nihilist believes that all moral claims are void of any truth value. An alternative scholarly perspective is that moral nihilism is a morality in itself. Cooper writes, “In the widest sense of the word ‘morality’, moral nihilism is a morality.”[11]

Political nihilism, a branch of nihilism, follows the characteristic nihilist’s rejection of non-rationalized or non-proven assertions; in this case the necessity of the most fundamental social and political structures, such as government, family, and law. An influential analysis of political nihilism is presented by Leo Strauss.[12]

The Russian Nihilist movement was a Russian trend in the 1860s that rejected all authority.[13] Their name derives from the Latin nihil, meaning “nothing”. After the assassination of Tsar Alexander II in 1881, the Nihilists gained a reputation throughout Europe as proponents of the use of violence for political change.[citation needed] The Nihilists expressed anger at what they described as the abusive nature of the Eastern Orthodox Church and of the tsarist monarchy, and at the domination of the Russian economy by the aristocracy. Although the term Nihilist was first popularised by the German theologian Friedrich Heinrich Jacobi (17431818), its widespread usage began with the 1862 novel Fathers and Sons by the Russian author Ivan Turgenev. The main character of the novel, Eugene Bazarov, who describes himself as a Nihilist, wants to educate the people. The “go to the people be the people” campaign reached its height in the 1870s, during which underground groups such as the Circle of Tchaikovsky, the People’s Will, and Land and Liberty formed. It became known as the Narodnik movement, whose members believed that the newly freed serfs were merely being sold into wage slavery in the onset of the Industrial Revolution, and that the middle and upper classes had effectively replaced landowners. The Russian state attempted to suppress the nihilist movement. In actions described by the Nihilists as propaganda of the deed many government officials were assassinated. In 1881 Alexander II was killed on the very day he had approved a proposal to call a representative assembly to consider new reforms.

The term nihilism was first used by Friedrich Heinrich Jacobi (17431819). Jacobi used the term to characterize rationalism[14] and in particular Immanuel Kant’s “critical” philosophy to carry out a reductio ad absurdum according to which all rationalism (philosophy as criticism) reduces to nihilismand thus it should be avoided and replaced with a return to some type of faith and revelation. Bret W. Davis writes, for example, “The first philosophical development of the idea of nihilism is generally ascribed to Friedrich Jacobi, who in a famous letter criticized Fichte’s idealism as falling into nihilism. According to Jacobi, Fichtes absolutization of the ego (the ‘absolute I’ that posits the ‘not-I’) is an inflation of subjectivity that denies the absolute transcendence of God.”[15] A related but oppositional concept is fideism, which sees reason as hostile and inferior to faith.

With the popularizing of the word nihilism by Ivan Turgenev, a new Russian political movement called the Nihilist movement adopted the term. They supposedly called themselves nihilists because nothing “that then existed found favor in their eyes”.[16]

Sren Kierkegaard (18131855) posited an early form of nihilism, to which he referred as levelling.[17] He saw levelling as the process of suppressing individuality to a point where the individual’s uniqueness becomes non-existent and nothing meaningful in his existence can be affirmed:

Levelling at its maximum is like the stillness of death, where one can hear one’s own heartbeat, a stillness like death, into which nothing can penetrate, in which everything sinks, powerless. One person can head a rebellion, but one person cannot head this levelling process, for that would make him a leader and he would avoid being levelled. Each individual can in his little circle participate in this levelling, but it is an abstract process, and levelling is abstraction conquering individuality.

Kierkegaard, an advocate of a philosophy of life, generally argued against levelling and its nihilist consequence, although he believed it would be “genuinely educative to live in the age of levelling [because] people will be forced to face the judgement of [levelling] alone.”[18] George Cotkin asserts Kierkegaard was against “the standardization and levelling of belief, both spiritual and political, in the nineteenth century [and he] opposed tendencies in mass culture to reduce the individual to a cipher of conformity and deference to the dominant opinion.”[19] In his day, tabloids (like the Danish magazine Corsaren) and apostate Christianity were instruments of levelling and contributed to the “reflective apathetic age” of 19th century Europe.[20] Kierkegaard argues that individuals who can overcome the levelling process are stronger for it and that it represents a step in the right direction towards “becoming a true self.”[18][21] As we must overcome levelling,[22]Hubert Dreyfus and Jane Rubin argue that Kierkegaard’s interest, “in an increasingly nihilistic age, is in how we can recover the sense that our lives are meaningful”.[23]

Note however that Kierkegaard’s meaning of “nihilism” differs from the modern definition in the sense that, for Kierkegaard, levelling led to a life lacking meaning, purpose or value,[20] whereas the modern interpretation of nihilism posits that there was never any meaning, purpose or value to begin with.

Nihilism is often associated with the German philosopher Friedrich Nietzsche, who provided a detailed diagnosis of nihilism as a widespread phenomenon of Western culture. Though the notion appears frequently throughout Nietzsche’s work, he uses the term in a variety of ways, with different meanings and connotations, all negative[citation needed]. Karen Carr describes Nietzsche’s characterization of nihilism “as a condition of tension, as a disproportion between what we want to value (or need) and how the world appears to operate.”[24] When we find out that the world does not possess the objective value or meaning that we want it to have or have long since believed it to have, we find ourselves in a crisis.[25] Nietzsche asserts that with the decline of Christianity and the rise of physiological decadence,[clarification needed] nihilism is in fact characteristic of the modern age,[26] though he implies that the rise of nihilism is still incomplete and that it has yet to be overcome.[27] Though the problem of nihilism becomes especially explicit in Nietzsche’s notebooks (published posthumously), it is mentioned repeatedly in his published works and is closely connected to many of the problems mentioned there.

Nietzsche characterized nihilism as emptying the world and especially human existence of meaning, purpose, comprehensible truth, or essential value. This observation stems in part from Nietzsche’s perspectivism, or his notion that “knowledge” is always by someone of some thing: it is always bound by perspective, and it is never mere fact.[28] Rather, there are interpretations through which we understand the world and give it meaning. Interpreting is something we can not go without; in fact, it is something we need. One way of interpreting the world is through morality, as one of the fundamental ways that people make sense of the world, especially in regard to their own thoughts and actions. Nietzsche distinguishes a morality that is strong or healthy, meaning that the person in question is aware that he constructs it himself, from weak morality, where the interpretation is projected on to something external. Regardless of its strength, morality presents us with meaning, whether this is created or ‘implanted,’ which helps us get through life.[29]

Nietzsche discusses Christianity, one of the major topics in his work, at length in the context of the problem of nihilism in his notebooks, in a chapter entitled “European Nihilism”.[30] Here he states that the Christian moral doctrine provides people with intrinsic value, belief in God (which justifies the evil in the world) and a basis for objective knowledge. In this sense, in constructing a world where objective knowledge is possible, Christianity is an antidote against a primal form of nihilism, against the despair of meaninglessness. However, it is exactly the element of truthfulness in Christian doctrine that is its undoing: in its drive towards truth, Christianity eventually finds itself to be a construct, which leads to its own dissolution. It is therefore that Nietzsche states that we have outgrown Christianity “not because we lived too far from it, rather because we lived too close”.[31] As such, the self-dissolution of Christianity constitutes yet another form of nihilism. Because Christianity was an interpretation that posited itself as the interpretation, Nietzsche states that this dissolution leads beyond skepticism to a distrust of all meaning.[32][33]

Stanley Rosen identifies Nietzsche’s concept of nihilism with a situation of meaninglessness, in which “everything is permitted.” According to him, the loss of higher metaphysical values that exist in contrast to the base reality of the world, or merely human ideas, gives rise to the idea that all human ideas are therefore valueless. Rejecting idealism thus results in nihilism, because only similarly transcendent ideals live up to the previous standards that the nihilist still implicitly holds.[34] The inability for Christianity to serve as a source of valuating the world is reflected in Nietzsche’s famous aphorism of the madman in The Gay Science.[35] The death of God, in particular the statement that “we killed him”, is similar to the self-dissolution of Christian doctrine: due to the advances of the sciences, which for Nietzsche show that man is the product of evolution, that Earth has no special place among the stars and that history is not progressive, the Christian notion of God can no longer serve as a basis for a morality.

One such reaction to the loss of meaning is what Nietzsche calls passive nihilism, which he recognises in the pessimistic philosophy of Schopenhauer. Schopenhauer’s doctrine, which Nietzsche also refers to as Western Buddhism, advocates a separating of oneself from will and desires in order to reduce suffering. Nietzsche characterises this ascetic attitude as a “will to nothingness”, whereby life turns away from itself, as there is nothing of value to be found in the world. This mowing away of all value in the world is characteristic of the nihilist, although in this, the nihilist appears inconsistent:[36]

A nihilist is a man who judges of the world as it is that it ought not to be, and of the world as it ought to be that it does not exist. According to this view, our existence (action, suffering, willing, feeling) has no meaning: the pathos of ‘in vain’ is the nihilists’ pathos at the same time, as pathos, an inconsistency on the part of the nihilists.

Nietzsche’s relation to the problem of nihilism is a complex one. He approaches the problem of nihilism as deeply personal, stating that this predicament of the modern world is a problem that has “become conscious” in him.[37] Furthermore, he emphasises both the danger of nihilism and the possibilities it offers, as seen in his statement that “I praise, I do not reproach, [nihilism’s] arrival. I believe it is one of the greatest crises, a moment of the deepest self-reflection of humanity. Whether man recovers from it, whether he becomes master of this crisis, is a question of his strength!”[38] According to Nietzsche, it is only when nihilism is overcome that a culture can have a true foundation upon which to thrive. He wished to hasten its coming only so that he could also hasten its ultimate departure.[26]

He states that there is at least the possibility of another type of nihilist in the wake of Christianity’s self-dissolution, one that does not stop after the destruction of all value and meaning and succumb to the following nothingness. This alternate, ‘active’ nihilism on the other hand destroys to level the field for constructing something new. This form of nihilism is characterized by Nietzsche as “a sign of strength,”[39] a wilful destruction of the old values to wipe the slate clean and lay down one’s own beliefs and interpretations, contrary to the passive nihilism that resigns itself with the decomposition of the old values. This wilful destruction of values and the overcoming of the condition of nihilism by the constructing of new meaning, this active nihilism, could be related to what Nietzsche elsewhere calls a ‘free spirit'[40] or the bermensch from Thus Spoke Zarathustra and The Antichrist, the model of the strong individual who posits his own values and lives his life as if it were his own work of art. It may be questioned, though, whether “active nihilism” is indeed the correct term for this stance, and some question whether Nietzsche takes the problems nihilism poses seriously enough.[41]

Martin Heidegger’s interpretation of Nietzsche influenced many postmodern thinkers who investigated the problem of nihilism as put forward by Nietzsche. Only recently has Heidegger’s influence on Nietzschean nihilism research faded.[42] As early as the 1930s, Heidegger was giving lectures on Nietzsches thought.[43] Given the importance of Nietzsches contribution to the topic of nihilism, Heidegger’s influential interpretation of Nietzsche is important for the historical development of the term nihilism.

Heidegger’s method of researching and teaching Nietzsche is explicitly his own. He does not specifically try to present Nietzsche as Nietzsche. He rather tries to incorporate Nietzsche’s thoughts into his own philosophical system of Being, Time and Dasein.[44] In his Nihilism as Determined by the History of Being (194446),[45] Heidegger tries to understand Nietzsches nihilism as trying to achieve a victory through the devaluation of the, until then, highest values. The principle of this devaluation is, according to Heidegger, the Will to Power. The Will to Power is also the principle of every earlier valuation of values.[46] How does this devaluation occur and why is this nihilistic? One of Heidegger’s main critiques on philosophy is that philosophy, and more specifically metaphysics, has forgotten to discriminate between investigating the notion of a Being (Seiende) and Being (Sein). According to Heidegger, the history of Western thought can be seen as the history of metaphysics. And because metaphysics has forgotten to ask about the notion of Being (what Heidegger calls Seinsvergessenheit), it is a history about the destruction of Being. That is why Heidegger calls metaphysics nihilistic.[47] This makes Nietzsches metaphysics not a victory over nihilism, but a perfection of it.[48]

Heidegger, in his interpretation of Nietzsche, has been inspired by Ernst Jnger. Many references to Jnger can be found in Heidegger’s lectures on Nietzsche. For example, in a letter to the rector of Freiburg University of November 4, 1945, Heidegger, inspired by Jnger, tries to explain the notion of God is dead as the reality of the Will to Power. Heidegger also praises Jnger for defending Nietzsche against a too biological or anthropological reading during the Third Reich.[49]

Heidegger’s interpretation of Nietzsche influenced a number of important postmodernist thinkers. Gianni Vattimo points at a back-and-forth movement in European thought, between Nietzsche and Heidegger. During the 1960s, a Nietzschean ‘renaissance’ began, culminating in the work of Mazzino Montinari and Giorgio Colli. They began work on a new and complete edition of Nietzsche’s collected works, making Nietzsche more accessible for scholarly research. Vattimo explains that with this new edition of Colli and Montinari, a critical reception of Heidegger’s interpretation of Nietzsche began to take shape. Like other contemporary French and Italian philosophers, Vattimo does not want, or only partially wants, to rely on Heidegger for understanding Nietzsche. On the other hand, Vattimo judges Heidegger’s intentions authentic enough to keep pursuing them.[50] Philosophers who Vattimo exemplifies as a part of this back and forth movement are French philosophers Deleuze, Foucault and Derrida. Italian philosophers of this same movement are Cacciari, Severino and himself.[51]Jrgen Habermas, Jean-Franois Lyotard and Richard Rorty are also philosophers who are influenced by Heidegger’s interpretation of Nietzsche.[52]

Postmodern and poststructuralist thought question the very grounds on which Western cultures have based their ‘truths’: absolute knowledge and meaning, a ‘decentralization’ of authorship, the accumulation of positive knowledge, historical progress, and certain ideals and practices of humanism and the Enlightenment.

Jacques Derrida, whose deconstruction is perhaps most commonly labeled nihilistic, did not himself make the nihilistic move that others have claimed. Derridean deconstructionists argue that this approach rather frees texts, individuals or organizations from a restrictive truth, and that deconstruction opens up the possibility of other ways of being.[53]Gayatri Chakravorty Spivak, for example, uses deconstruction to create an ethics of opening up Western scholarship to the voice of the subaltern and to philosophies outside of the canon of western texts.[54] Derrida himself built a philosophy based upon a ‘responsibility to the other’.[55] Deconstruction can thus be seen not as a denial of truth, but as a denial of our ability to know truth (it makes an epistemological claim compared to nihilism’s ontological claim).

Lyotard argues that, rather than relying on an objective truth or method to prove their claims, philosophers legitimize their truths by reference to a story about the world that can’t be separated from the age and system the stories belong toreferred to by Lyotard as meta-narratives. He then goes on to define the postmodern condition as characterized by a rejection both of these meta-narratives and of the process of legitimation by meta-narratives. “In lieu of meta-narratives we have created new language-games in order to legitimize our claims which rely on changing relationships and mutable truths, none of which is privileged over the other to speak to ultimate truth.”[citation needed] This concept of the instability of truth and meaning leads in the direction of nihilism, though Lyotard stops short of embracing the latter.

Postmodern theorist Jean Baudrillard wrote briefly of nihilism from the postmodern viewpoint in Simulacra and Simulation. He stuck mainly to topics of interpretations of the real world over the simulations of which the real world is composed. The uses of meaning was an important subject in Baudrillard’s discussion of nihilism:

The apocalypse is finished, today it is the precession of the neutral, of forms of the neutral and of indifferenceall that remains, is the fascination for desertlike and indifferent forms, for the very operation of the system that annihilates us. Now, fascination (in contrast to seduction, which was attached to appearances, and to dialectical reason, which was attached to meaning) is a nihilistic passion par excellence, it is the passion proper to the mode of disappearance. We are fascinated by all forms of disappearance, of our disappearance. Melancholic and fascinated, such is our general situation in an era of involuntary transparency.

In Nihil Unbound: Extinction and Enlightenment, Ray Brassier maintains that philosophy has avoided the traumatic idea of extinction, instead attempting to find meaning in a world conditioned by the very idea of its own annihilation. Thus Brassier critiques both the phenomenological and hermeneutic strands of Continental philosophy as well as the vitality of thinkers like Gilles Deleuze, who work to ingrain meaning in the world and stave off the threat of nihilism. Instead, drawing on thinkers such as Alain Badiou, Franois Laruelle, Paul Churchland, and Thomas Metzinger, Brassier defends a view of the world as inherently devoid of meaning. That is, rather than avoiding nihilism, Brassier embraces it as the truth of reality. Brassier concludes from his readings of Badiou and Laruelle that the universe is founded on the nothing,[56] but also that philosophy is the “organon of extinction,” that it is only because life is conditioned by its own extinction that there is thought at all.[57] Brassier then defends a radically anti-correlationist philosophy proposing that Thought is conjoined not with Being, but with Non-Being.

The term Dada was first used by Richard Huelsenbeck and Tristan Tzara in 1916.[58] The movement, which lasted from approximately 1916 to 1922, arose during World War I, an event that influenced the artists.[59] The Dada Movement began in Zrich, Switzerland known as the “Niederdorf” or “Niederdrfli” in the Caf Voltaire.[60] The Dadaists claimed that Dada was not an art movement, but an anti-art movement, sometimes using found objects in a manner similar to found poetry. The “anti-art” drive is thought to have stemmed from a post-war emptiness. This tendency toward devaluation of art has led many to claim that Dada was an essentially nihilistic movement. Given that Dada created its own means for interpreting its products, it is difficult to classify alongside most other contemporary art expressions. Hence, due to its ambiguity, it is sometimes classified as a nihilistic modus vivendi.[59]

The term “nihilism” was actually popularized by Ivan Turgenev in his novel Fathers and Sons, whose hero, Bazarov, was a nihilist and recruited several followers to the philosophy. He found his nihilistic ways challenged upon falling in love.[61]

Anton Chekhov portrayed nihilism when writing Three Sisters. The phrase “what does it matter” or such variants is often spoken by several characters in response to events; the significance of some of these events suggests a subscription to nihilism by said characters as a type of coping strategy.

Ayn Rand vehemently denounced nihilism as an abdication of rationality and the pursuit of happiness which she regarded as life’s moral purpose. As such, most villains are depicted as moral nihilists including Ellsworth Monckton Toohey in The Fountainhead who is a self-aware nihilist and the corrupt government in Atlas Shrugged who are unconsciously driven by nihilism which has taken root in the books depiction of American society with the fictional slang phrase “Who is John Galt?” being used as a defeatist way of saying “Who knows?” or “What does it matter?” by characters in the book who have essentially given up on life.[citation needed]

The philosophical ideas of the French author, the Marquis de Sade, are often noted as early examples of nihilistic principles.[citation needed]

In Act III of Shostakovich’s opera “Lady Macbeth of the Mtsensk District”, a nihilist is tormented by the Russian police.[citation needed]

A 2007 article in The Guardian noted that “…in the summer of 1977, …punk’s nihilistic swagger was the most thrilling thing in England.”[62] The Sex Pistols’ God Save The Queen, with its chant-like refrain of “no future”, became a slogan for unemployed and disaffected youth during the late 1970s. Their song Pretty Vacant is also a prime example of the band’s nihilistic outlook. Other influential punk rock and proto-punk bands to adopt nihilistic themes include The Velvet Underground, The Stooges, Misfits, Ramones, Johnny Thunders and the Heartbreakers, Richard Hell and the Voidoids, Suicide and Black Flag.[63]

Industrial, black metal, death metal, and doom metal music often emphasize nihilistic themes. Explorers of nihilistic themes in heavy metal include Black Sabbath, Metallica, Marilyn Manson, Slayer, KMFDM, Opeth, Alice in Chains, Godflesh, Celtic Frost, Ministry, Autopsy, Dismember, Motrhead, Nine Inch Nails, Bathory, Decapitated, Darkthrone, Emperor, Tool, Meshuggah, Candlemass, Morbid Saint, Kreator, Morbid Angel, Sepultura, Exodus, Entombed, Death, Mayhem, Nevermore, Dark Angel, Dissection, Nihilist, Weakling, Obituary, Electric Wizard, Eyehategod, Pantera, Sleep, Xasthur, At the Gates and the band Turbonegro have a song called TNA (The Nihilistic Army), which is solely in reference to outlying principles of nihilism.[64][65][66]

Three of the antagonists in the 1998 movie The Big Lebowski are explicitly described as “nihilists,” but are not shown exhibiting any explicitly nihilistic traits during the film. Regarding the nihilists, the character Walter Sobchak comments “Nihilists! Fuck me. I mean, say what you want about the tenets of National Socialism, Dude, at least it’s an ethos.” [67] The 1999 film The Matrix portrays the character Thomas A. Anderson with a hollowed out copy of Baudrillard’s treatise, Simulacra and Simulation, in which he stores contraband data files under the chapter “On Nihilism.” The main antagonist Agent Smith is also depicted frequently as a nihilist, with him ranting about how all of peace, justice and love were meaningless in The Matrix Revolutions.[68] The 1999 film Fight Club also features concepts relating to Nihilism by exploring the contrasts between the artificial values imposed by consumerism in relation to the more meaningful pursuit of spiritual happiness.

In keeping with his comic book depiction, The Joker is portrayed as a nihilist in The Dark Knight, describing himself as “an Agent of Chaos” and at one point burning a gigantic pile of money stating that crime is “not about money, it’s about sending a message: everything burns.” Alfred Pennyworth states, regarding the Joker, “Some men aren’t looking for anything logical, like moneythey can’t be bought, bullied, reasoned or negotiated withsome men just want to watch the world burn.”[69]

Although the character Barthandelus from Final Fantasy XIII is not referred to as nihilistic in the game itself, he is referred to as such in the Fighting Fate entry for Theatrhythm Final Fantasy.[70]

See the rest here:

About Our Islands | US Virgin Islands

 Islands  Comments Off on About Our Islands | US Virgin Islands
Feb 292016

Each of our three major islands has a unique character all its own. St. Croix’s Danish influence is perfect for visitors who prefer a laid-back experience. The historic towns of Frederiksted and Christiansted offer quaint shops, charming pastel buildings and refreshing cultural diversity. From horseback riding near 18th-century sugar mills to playing golf on one of the island’s three scenic golf courses, you’re sure to find something to suit your tastes.

Two-thirds of St. John is a national park. Its comfortable pace is perfect for enjoying the island’s world-renowned beaches such as Trunk Bay, Cinnamon Bay and Salt Pond Bay. A nature lover’s favorite, St. John offers hiking, camping, specialty shopping and breathtaking views. If you take just a few hours to visit this island, you’ll find it well worth the trip.

St. Thomas boasts one of the most beautiful harbors in the world. As the most visited port in the Caribbean, downtown Charlotte Amalie offers elegant dining, exciting nightlife, duty-free shopping and even submarine rides. Though it’s full of energy, especially in Charlotte Amalie, this island also possesses numerous sublime natural splendors, such as stunning views of the Caribbean from 1,500 feet above sea level.

See more here:
About Our Islands | US Virgin Islands

 Posted by at 7:42 pm  Tagged with:

Astronomy | Article about astronomy by The Free Dictionary

 Astronomy  Comments Off on Astronomy | Article about astronomy by The Free Dictionary
Feb 052016

astronomy, branch of sciencescience [Lat. scientia=knowledge]. For many the term science refers to the organized body of knowledge concerning the physical world, both animate and inanimate, but a proper definition would also have to include the attitudes and methods through which this body of ….. Click the link for more information. that studies the motions and natures of celestial bodies, such as planetsplanet [Gr.,=wanderer], a large nonluminous body of rock or gas that orbits the sun or another star, has a rounded shape due to gravity, and has cleared its orbit of smaller objects. ….. Click the link for more information. , starsstar, hot incandescent sphere of gas, held together by its own gravitation, and emitting light and other forms of electromagnetic radiation whose ultimate source is nuclear energy. ….. Click the link for more information. , and galaxiesgalaxy, large aggregation of stars, gas, and dust, typically containing billions of stars. Recognition that galaxies are independent star systems outside the Milky Way came from a study of the Andromeda Galaxy (192629) by Edwin P. ….. Click the link for more information. ; more generally, the study of mattermatter, anything that has mass and occupies space. Matter is sometimes called koinomatter (Gr. koinos=common) to distinguish it from antimatter, or matter composed of antiparticles. ….. Click the link for more information. and energyenergy, in physics, the ability or capacity to do work or to produce change. Forms of energy include heat, light, sound, electricity, and chemical energy. Energy and work are measured in the same unitsfoot-pounds, joules, ergs, or some other, depending on the system of ….. Click the link for more information. in the universeuniverse, totality of matter and energy in existence. The study of the origin of the universe, or cosmos, is known as cosmogony, and that of its structure and evolution, cosmology. The age of the universe depends on which theory of cosmology one accepts. ….. Click the link for more information. at large. Ancient Astronomy

Astronomy is the oldest of the physical sciences. In many early civilizations the regularity of celestial motions was recognized, and attempts were made to keep records and predict future events. The first practical function of astronomy was to provide a basis for the calendarcalendar [Lat., from Kalends], system of reckoning time for the practical purpose of recording past events and calculating dates for future plans. The calendar is based on noting ordinary and easily observable natural events, the cycle of the sun through the seasons with equinox ….. Click the link for more information. , the units of month and year being determined by astronomical observations. Later, astronomy served in navigation and timekeeping. The Chinese had a working calendar as early as the 13th cent. B.C. About 350 B.C., Shih Shen prepared the earliest known star catalog, containing 800 entries. Ancient Chinese astronomy is best known today for its observations of cometscomet [Gr.,=longhaired], a small celestial body consisting mostly of dust and gases that moves in an elongated elliptical or nearly parabolic orbit around the sun or another star. Comets visible from the earth can be seen for periods ranging from a few days to several months. ….. Click the link for more information. and supernovassupernova, a massive star in the latter stages of stellar evolution that suddenly contracts and then explodes, increasing its energy output as much as a billionfold. Supernovas are the principal distributors of heavy elements throughout the universe; all elements heavier than ….. Click the link for more information. . The Babylonians, Assyrians, and Egyptians were also active in astronomy. The earliest astronomers were priests, and no attempt was made to separate astronomy from astrologyastrology, form of divination based on the theory that the movements of the celestial bodiesthe stars, the planets, the sun, and the mooninfluence human affairs and determine the course of events. ….. Click the link for more information. . In fact, an early motivation for the detailed study of planetary positions was the preparation of horoscopes.

The highest development of astronomy in the ancient world came with the Greeks in the period from 600 B.C. to A.D. 400. The methods employed by the Greek astronomers were quite distinct from those of earlier civilizations, such as the Babylonian. The Babylonian approach was numerological and best suited for studying the complex lunar motions that were of overwhelming interest to the Mesopotamian peoples. The Greek approach, on the contrary, was geometric and schematic, best suited for complete cosmological models. Thales, an Ionian philosopher of the 6th cent. B.C., is credited with introducing geometrical ideas into astronomy. Pythagoras, about a hundred years later, imagined the universe as a series of concentric spheres in which each of the seven “wanderers” (the sun, the moon, and the five known planets) were embedded. Euxodus developed the idea of rotating spheres by introducing extra spheres for each of the planets to account for the observed complexities of their motions. This was the beginning of the Greek aim of providing a theory that would account for all observed phenomena. Aristotle (384322 B.C.) summarized much of the Greek work before him and remained an absolute authority until late in the Middle Ages. Although his belief that the earth does not move retarded astronomical progress, he gave the correct explanation of lunar eclipses and a sound argument for the spherical shape of the earth.

The apex of Greek astronomy was reached in the Hellenistic period by the Alexandrian school. Aristarchus (c.310c.230 B.C.) determined the sizes and distances of the moon and sun relative to the earth and advocated a heliocentric (sun-centered) cosmology. Although there were errors in his assumptions, his approach was truly scientific; his work was the first serious attempt to make a scale model of the universe. The first accurate measurement of the actual (as opposed to relative) size of the earth was made by Eratosthenes (284192 B.C.). His method was based on the angular difference in the sun’s position at the high noon of the summer solsticesolstice [Lat.,=sun stands still], in astronomy, either of the two points on the ecliptic that lie midway between the equinoxes (separated from them by an angular distance of 90). ….. Click the link for more information. in two cities whose distance apart was known.

The greatest astronomer of antiquity was Hipparchus (190120 B.C.). He developed trigonometrytrigonometry [Gr.,=measurement of triangles], a specialized area of geometry concerned with the properties of and relations among the parts of a triangle. Spherical trigonometry is concerned with the study of triangles on the surface of a sphere rather than in the plane; it is ….. Click the link for more information. and used it to determine astronomical distances from the observed angular positions of celestial bodies. He recognized that astronomy requires accurate and systematic observations extended over long time periods. He therefore made great use of old observations, comparing them to his own. Many of his observations, particularly of the planets, were intended for future astronomers. He devised a geocentric system of cycles and epicycles (a compounding of circular motions) to account for the movements of the sun and moon.

Ptolemy (A.D. 85165) applied the scheme of epicycles to the planets as well. The resulting Ptolemaic systemPtolemaic system , historically the most influential of the geocentric cosmological theories, i.e., theories that placed the earth motionless at the center of the universe with all celestial bodies revolving around it (see cosmology). ….. Click the link for more information. was a geometrical representation of the solar systemsolar system, the sun and the surrounding planets, natural satellites, dwarf planets, asteroids, meteoroids, and comets that are bound by its gravity. The sun is by far the most massive part of the solar system, containing almost 99.9% of the system’s total mass. ….. Click the link for more information. that predicted the motions of the planets with considerable accuracy. Among his other achievements was an accurate measurement of the distance to the moon by a parallaxparallax , any alteration in the relative apparent positions of objects produced by a shift in the position of the observer. In astronomy the term is used for several techniques for determining distance. ….. Click the link for more information. technique. His 13-volume treatise, the Almagest, summarized much of ancient astronomical knowledge and, in many translations, was the definitive authority for the next 14 centuries.

After the fall of Rome, European astronomy was largely dormant, but significant work was carried out by the Muslims and the Hindus. It was by way of Arabic translations that Greek astronomy reached medieval Europe. One of the great landmarks of the revival of learning in Europe was the publication (1543) by Nicolaus Copernicus (14731543) of his De revolutionibus orbium coelestium (On the Revolutions of the Celestial Spheres). According to the Copernican systemCopernican system, first modern European theory of planetary motion that was heliocentric, i.e., that placed the sun motionless at the center of the solar system with all the planets, including the earth, revolving around it. ….. Click the link for more information. , the earth rotates on its axis and, with all the other planets, revolves around the sun. The assertion that the earth is not the center of the universe was to have profound philosophical and religious consequences. Copernicus’s principal claim for his new system was that it made calculations easier. He retained the uniform circular motion of the Ptolemaic system, but by placing the sun at the center, he was able to reduce the number of epicycles. Copernicus also determined the sidereal periods (time for one revolution around the sun) of the planets and their distance from the sun relative to the sun-earth distance (see astronomical unitastronomical unit (AU), mean distance between the earth and sun; one AU is c.92,960,000 mi (149,604,970 km). The astronomical unit is the principal unit of measurement within the solar system, e.g., Mercury is just over 1-3 AU and Pluto is about 39 AU from the sun. ….. Click the link for more information. ).

The great astronomer Tycho Brahe (15461601) was principally an observer; a conservative in matters of theory, he rejected the notion that the earth moves. Under the patronage of King Frederick II, Tycho established Uraniborg, a superb observatory on the Danish island of Hveen. Over a period of 20 years (157697), he and his assistants compiled the most accurate and complete astronomical observations to that time. At his death his records passed to Johannes Kepler (15711630), who had been his last assistant. Kepler spent nearly a decade trying to fit Tycho’s observations, particularly of Mars, into an improved system of heliocentric circular motion. At last, he conceived the idea that the orbit of Mars was an ellipse with the sun at one focus. This led him to the three laws of planetary motion that bear his name (see Kepler’s lawsKepler’s laws, three mathematical statements formulated by the German astronomer Johannes Kepler that accurately describe the revolutions of the planets around the sun. Kepler’s laws opened the way for the development of celestial mechanics, i.e. ….. Click the link for more information. ).

Galileo Galilei (15641642) made fundamental discoveries in both astronomy and physics; he is perhaps best described as the founder of modern science. Galileo was the first to make astronomical use of the telescopetelescope, traditionally, a system of lenses, mirrors, or both, used to gather light from a distant object and form an image of it. Traditional optical telescopes, which are the subject of this article, also are used to magnify objects on earth and in astronomy; other types of ….. Click the link for more information. . His discoveries of the four largest moons of Jupiter and the phases of Venus were persuasive evidence for the Copernican cosmology. His discoveries of craters on the moon and blemishes on the sun (sunspotssunspots, dark, usually irregularly shaped spots on the sun’s surface that are actually solar magnetic storms. The spots are darker because the temperature of the spots is lower than that of the surrounding photosphere (the visible surface of the sun). ….. Click the link for more information. ) discredited the ancient belief in the perfection of the heavens. These findings were announced in The Sidereal Messenger, a small book published in 1610. Galileo’s Dialogue on the Two Chief Systems of the World (1632) was an eloquent argument for the Copernican system over the Ptolemaic. However, Galileo was called before the Inquisition and forced to renounce publicly all doctrines considered contrary to Scripture.

Isaac Newton (16421727), possibly the greatest scientific genius of all time, succeeded in uniting the sciences of astronomy and physicsphysics, branch of science traditionally defined as the study of matter, energy, and the relation between them; it was called natural philosophy until the late 19th cent. and is still known by this name at a few universities. ….. Click the link for more information. . His laws of motion and theory of universal gravitationgravitation, the attractive force existing between any two particles of matter. The Law of Universal Gravitation

Since the gravitational force is experienced by all matter in the universe, from the largest galaxies down to the smallest particles, it is often ….. Click the link for more information. provided a physical, dynamic basis for the merely descriptive laws of Kepler. Until well into the 19th cent., all progress in astronomy was essentially an extension of Newton’s work. Edmond HalleyHalley, Edmond , 16561742, English astronomer and mathematician. He is particularly noted as the first astronomer to predict the return of a comet and the first to point out the use of a transit of Venus in determining the parallax of the sun. In 1676 he went to St. ….. Click the link for more information. ‘s prediction that the comet of 1682 would return in 1758 was refined by A. C. Clairault, who included the perturbing effects of Jupiter and Saturn on the orbit to calculate the nearly exact date of the return of the comet. In 1781, William Herschel accidentally discovered a new planet, eventually named Uranus. Discrepancies between the observed and theoretical orbits of Uranus indicated the existence of a still more distant planet that was affecting Uranus’s motion. J. C. Adams and U. J. J. Leverrier independently calculated the position where the new planet, Neptune, was actually discovered (1846). Similar calculations for a large “Planet X” led in 1930 to the discovery of Pluto, now classed as a dwarf planetdwarf planet, a nonluminous body of rock or gas that orbits the sun and has a rounded shape due to its gravity. Unlike a planet, a dwarf planet is not capable of clearing its orbit of smaller objects by collision, capture, or other means. ….. Click the link for more information. .

By the early 19th cent., the science of celestial mechanicscelestial mechanics, the study of the motions of astronomical bodies as they move under the influence of their mutual gravitation. Celestial mechanics analyzes the orbital motions of planets, dwarf planets, comets, asteroids, and natural and artificial satellites within the ….. Click the link for more information. had reached a highly developed state at the hands of Leonhard Euler, J. L. Lagrange, P. S. Laplace, and others. Powerful new mathematical techniques allowed solution of most of the remaining problems in classical gravitational theory as applied to the solar system. In 1801, Giuseppe Piazzi discovered Ceres, the first of many asteroidsasteroid, planetoid, or minor planet, small body orbiting the sun. More than 300,000 asteroids have been identified and cataloged; more than a million are believed to exist in the main belt between Mars and Jupiter, with many more in the Kuiper belt ….. Click the link for more information. . When Ceres was lost to view, C. F. Gauss applied the advanced gravitational techniques to compute the position where the asteroid was subsequently rediscovered. In 1838, F. W. Bessel made the first measurement of the distance to a star; using the method of parallax with the earth’s orbit as a baseline, he determined the distance of the star 61 Cygni to be 60 trillion mi (about 10 light-yearslight-year, in astronomy, unit of length equal to the distance light travels in one sidereal year. It is 9.461 1012 km (about 6 million million mi). Alpha Centauri and Proxima Centauri, the stars nearest our solar system, are about 4.3 light-years distant. ….. Click the link for more information. ), a figure later shown to be 40% too large.

Astronomy was revolutionized in the second half of the 19th cent. by the introduction of techniques based on photography and spectroscopy. Interest shifted from determining the positions and distances of stars to studying their physical composition (see stellar structurestellar structure, physical properties of a star and the processes taking place within it. Except for that of the sun, astronomers must draw their conclusions regarding stellar structure on the basis of light and other radiation from stars that are light-years away; this light ….. Click the link for more information. and stellar evolutionstellar evolution, life history of a star, beginning with its condensation out of the interstellar gas (see interstellar matter) and ending, sometimes catastrophically, when the star has exhausted its nuclear fuel or can no longer adjust itself to a stable configuration. ….. Click the link for more information. ). The dark lines in the solar spectrumspectrum, arrangement or display of light or other form of radiation separated according to wavelength, frequency, energy, or some other property. Beams of charged particles can be separated into a spectrum according to mass in a mass spectrometer (see mass spectrograph). ….. Click the link for more information. that had been observed by W. H. Wollaston and Joseph von Fraunhofer were interpreted in an elementary fashion by G. R. Kirchhoff on the basis of classical physics, although a complete explanation came only with the quantum theoryquantum theory, modern physical theory concerned with the emission and absorption of energy by matter and with the motion of material particles; the quantum theory and the theory of relativity together form the theoretical basis of modern physics. ….. Click the link for more information. . Between 1911 and 1913, Ejnar Hertzsprung and H. N. Russell studied the relation between the colors and luminosities of typical stars (see Hertzsprung-Russell diagramHertzsprung-Russell diagram [for Ejnar Hertzsprung and H. N. Russell], graph showing the luminosity of a star as a function of its surface temperature. The luminosity, or absolute magnitude, increases upwards on the vertical axis; the temperature (or some temperature-dependent ….. Click the link for more information. ). With the construction of ever more powerful telescopes (see observatoryobservatory, scientific facility especially equipped to detect and record naturally occurring scientific phenomena. Although geological and meteorological observatories exist, the term is generally applied to astronomical observatories. ….. Click the link for more information. ), the boundaries of the known universe constantly increased. E. P. Hubble’s study of the distant galaxies led him to conclude that the universe is expanding (see Hubble’s lawHubble’s law, in astronomy, statement that the distances between galaxies (see galaxy) or clusters of galaxies are continuously increasing and that therefore the universe is expanding. ….. Click the link for more information. ). Using Cepheid variablesCepheid variables , class of variable stars that brighten and dim in an extremely regular fashion. The periods of the fluctuations (the time to complete one cycle from bright to dim and back to bright) last several days, although they range from 1 to 50 days. ….. Click the link for more information. as distance indicators, Harlow Shapley determined the size and shape of our galaxy, the Milky WayMilky Way, the galaxy of which the sun and solar system are a part, seen as a broad band of light arching across the night sky from horizon to horizon; if not blocked by the horizon, it would be seen as a circle around the entire sky. ….. Click the link for more information. . During World War II Walter BaadeBaade, Walter , 18931960, German-born American astronomer. From 1919 to 1931 he was on the staff of the Hamburg observatory; from 1931 to 1958, at the Mt. Wilson observatory. ….. Click the link for more information. defined two “populations” of stars, and suggested that an examination of these different types might trace the spiral shape of our own galaxy (see stellar populationsstellar populations, two broadly contrasting distributions of star types that are characteristic of different parts of a galaxy. Population I stars are young, recently formed stars, whereas population II stars are old and highly evolved. ….. Click the link for more information. ). In 1951 a Yerkes Observatory group led by William W. Morgan detected evidence of two spiral arms in the Milky Way galaxy.

Various rival theories of the origin and overall structure of the universe, e.g., the big bang and steady state theories, have been formulated (see cosmologycosmology, area of science that aims at a comprehensive theory of the structure and evolution of the entire physical universe. Modern Cosmological Theories

….. Click the link for more information. ). Albert Einstein’s theory of relativityrelativity, physical theory, introduced by Albert Einstein, that discards the concept of absolute motion and instead treats only relative motion between two systems or frames of reference. ….. Click the link for more information. plays a central role in all modern cosmological theories. In 1963, the moon passed in front of the radio source 3C-273, allowing Cyril Hazard to calculate the exact position of the source. With this information, Maarten Schmidt photographed the object’s spectrum using the 200-in. (5-m) reflector on Palomar Mt., then the world’s largest telescope. He interpreted the result as coming from an object, now known as a quasarquasar , one of a class of blue celestial objects having the appearance of stars when viewed through a telescope and currently believed to be the most distant and most luminous objects in the universe; the name is shortened from quasi-stellar radio source (QSR). ….. Click the link for more information. , at an extreme distance and receding from us at a substantial fraction of the speed of light. In 1967 Antony Hewish and Jocelyn Bell Burnell discovered a radio source a few hundred light years away featuring regular pulses at intervals of about 1 second with an accuracy of repetition of one-millionth of a second. This was the first discovered pulsarpulsar, in astronomy, a neutron star that emits brief, sharp pulses of energy instead of the steady radiation associated with other natural sources. The study of pulsars began when Antony Hewish and his students at Cambridge built a primitive radio telescope to study a ….. Click the link for more information. , a rapidly spinning neutron starneutron star, extremely small, extremely dense star, with as much as double the sun’s mass but only a few miles in radius, in the final stage of stellar evolution. Astronomers Baade and Zwicky predicted the existence of neutron stars in 1933. ….. Click the link for more information. emitting lighthouse-type beams of energy, the end result of the death of a star in a supernova explosion.

The discovery by Karl Jansky in 1931 that radio signals were emitted by celestial bodies initiated the science of radio astronomyradio astronomy, study of celestial bodies by means of the electromagnetic radio frequency waves they emit and absorb naturally. Radio Telescopes

Radio waves emanating from celestial bodies are received by specially constructed antennas, called radio ….. Click the link for more information. . Most recently, the frontiers of astronomy have been expanded by space explorationspace exploration, the investigation of physical conditions in space and on stars, planets, and other celestial bodies through the use of artificial satellites (spacecraft that orbit the earth), space probes (spacecraft that pass through the solar system and that may or may not ….. Click the link for more information. . Perturbations and interference from the earth’s atmosphere make space-based observations necessary for infraredinfrared astronomy, study of celestial objects by means of the infrared radiation they emit, in the wavelength range from about 1 micrometer to about 1 millimeter. All objects, from trees and buildings on the earth to distant galaxies, emit infrared (IR) radiation. ….. Click the link for more information. , ultravioletultraviolet astronomy, study of celestial objects by means of the ultraviolet radiation they emit, in the wavelength range from about 90 to about 350 nanometers. Ultraviolet (UV) line spectrum measurements are used to discern the chemical composition, densities, and temperatures ….. Click the link for more information. , gamma-raygamma-ray astronomy, study of astronomical objects by analysis of the most energetic electromagnetic radiation they emit. Gamma rays are shorter in wavelength and hence more energetic than X rays (see gamma radiation) but much harder to detect and to pinpoint. ….. Click the link for more information. , and X-ray astronomyX-ray astronomy, study of celestial objects by means of the X rays they emit, in the wavelength range from 0.01 to 10 nanometers. X-ray astronomy dates to 1949 with the discovery that the sun emits X rays. ….. Click the link for more information. . The Surveyor and Apollo spacecraft of the late 1960s and early 1970s helped launch the new field of astrogeology. A series of interplanetary probes, such as Mariner 2 (1962) and 5 (1967) to Venus, Mariner 4 (1965) and 6 (1969) to Mars, and Voyager 1 (1979) and 2 (1979), provided a wealth of data about Jupiter, Saturn, Uranus, and Neptune; more recently, the Magellan probe to Venus (1990) and the Galileo probe to Jupiter (1995) have continued this line of research (see satellite, artificialsatellite, artificial, object constructed by humans and placed in orbit around the earth or other celestial body (see also space probe). The satellite is lifted from the earth’s surface by a rocket and, once placed in orbit, maintains its motion without further rocket propulsion. ….. Click the link for more information. ; space probespace probe, space vehicle carrying sophisticated instrumentation but no crew, designed to explore various aspects of the solar system (see space exploration). Unlike an artificial satellite, which is placed in more or less permanent orbit around the earth, a space probe is ….. Click the link for more information. ). The Hubble Space TelescopeHubble Space Telescope (HST), the first large optical orbiting observatory. Built from 1978 to 1990 at a cost of $1.5 billion, the HST (named for astronomer E. P. Hubble) was expected to provide the clearest view yet obtained of the universe from a position some 350 mi (560 km) ….. Click the link for more information. , launched in 1990, has made possible visual observations of a quality far exceeding those of earthbound instruments.

See A. Berry, Short History of Astronomy (1961); J. L. Dreyer, History of Astronomy from Thales to Kepler (2d ed. 1953); A. Koyr, The Astronomical Revolution (1973); P. Maffei, Beyond the Moon (1978); P. Moore, ed. The International Encyclopedia of Astronomy (1987); S. Maran, ed., The Astronomy and Astrophysics Encyclopedia (1991); C. Peterson and J. C. Brandt, Astronomy with the Hubble Space Telescope (1995).

the scientific study of the individual celestial bodies (excluding the earth) and of the universe as a whole. Its various branches include astrometry, astrodynamics, cosmology, and astrophysics

The science concerned with celestial bodies and the observation and interpretation of the radiation received in the vicinity of the earth from the component parts of the universe.

(fl. c. 270 B.C.) Greek astronomer; first to maintain that Earth rotates and revolves around Sun. [Gk. Hist.: EB, I: 514]

(14531543) Polish astronomer; author of the Copernican theory that planets orbit the sun. [Polish Hist.: NCE, 652]

(15641642) Italian mathematician, astronomer, and physicist. [Ital. Hist.: EB, IV: 388]

(16561742) British mathematician and astronomer; calculated orbit of comet named after him. [Br. Hist.: EB, IV: 860]

(fl. 146127 B.C.) astronomer who calculated the year and discovered the precession of the equinoxes. [Turkish Hist.: EB, V: 55]

(85165) eminent Greek astronomer. [Gk. Hist.: Hall, 255]

muse of astronomy. [Gk. Myth.: Jobes, 374]

the science of the structure and evolution of cosmic bodies, their systems, and the universe as a whole.

Objectives and branches of astronomy. Astronomy studies the bodies of the solar system, stars, galactic nebulas, interstellar matter, our galaxy (the Milky Way system) and other galaxies, their distribution in space, and their motion, physical nature, interactions, origins, and evolution. Astronomy also studies and develops means for applying the observations of celestial bodies to the practical needs of man. Examples of this are time service, the determination of geographical coordinates and azimuths on the earths surface, the study of the shape of the earth from observations made by artificial earth satellites, the stellar orientation of artificial satellites and space probes, and other similar applications. Astronomy contributes to the development of a correct materialistic understanding of the universe. Astronomy is closely related to other precise sciences, in particular to mathematics, physics, and several branches of mechanics. It utilizes the accomplishments of these sciences and in turn affects their development.

Depending on the object of study and the methods of research, astronomy is divided into a number of disciplines (branches). Astrometry is concerned with the construction of a basic inertial system of coordinates for astronomical measurements, the determination of the positions and motions of celestial objects, the study of the laws of the earths rotation, the calculation of time, and the determination of the values of fundamental astronomical constants. Astrometry includes spherical astronomy, which uses mathematical methods to determine the visible positions and motions of celestial objects, and practical astronomy, which is particularly concerned with the theory of angle-measuring instruments and their applications in determining time, geographical coordinates (latitude and longitude), and azimuthal directions. Celestial mechanics (theoretical astronomy) studies the motions of celestial bodies, including artificial objects, under the influence of universal gravitation (astrodynamics) as well as the equilibrium configurations of celestial bodies. Stellar astronomy considers the star system forming our galaxy, the Milky Way; extragalactic astronomy deals with other galaxies and their systems. Astrophysics, which includes astrophotometry, astrospectroscopy, and other branches, studies physical phenomena and chemical processes occurring within celestial bodies, their systems, and cosmic space. Radio astronomy studies the nature and spatial distribution of the cosmic sources of radio waves. The construction of artificial earth satellites and space probes led to the development of extra-atmospheric astronomy, a field that has a promising future. Cosmogony deals with the origin of individual celestial bodies as well as of their systems, in particular that of the solar system. Cosmology studies the laws and structure of the universe as a whole.

Ancient times. Astronomy arose in remote antiquity as a result of the need to determine time and to guide travelers in their journeys. Even simple observations of heavenly bodies with the naked eye enable people to determine directions on land as well as on sea. The study of periodic celestial phenomena provided the basis for time measurement and the establishment of a calendar system, which permitted the prediction of seasonal phenomena that were important for the practical activities of man.

The astronomical knowledge of the ancient Chinese has come down to us in a very incomplete and often distorted form. They were able to determine the time and the positions between the stars of the points of equinox and solstice as well as the inclination of the ecliptic to the equator. Precise synodical periods of planetary motion were known by the first century B.C. In India a chronological system was established in which the motion of Jupiter played a major role. In ancient Egypt the period of the Niles spring floods, on which agricultural work was dependent, was determined from observations of the stars. In Arabia, where because of the daytime heat much work was done at night, observation of the moons phases played an important role. In ancient Greece, where navigation was developed and where the question of determining ones bearings was paramount, particularly before the invention of the compass, orientation methods using stars were developed. Among many peoples, particularly in Islamic countries, religious ceremonies were connected with the periodicity of celestial phenomena, mainly with the lunar phases.

Sufficiently accurate astronomical observations were made and passed down to subsequent generations in remote antiquity. Because of this, the Egyptians in the 28th century B.C. had already determined the length of the year to be 365 days. The period of alternation of the lunar phases (synodic month) was known to an accuracy of several minutes; evidence of this is the discovery in the fifth century B.C. of the Metonic cycle, in which the lunar phases fall on the same days of the year every 19 years. The repetition period of the solar eclipse of 18 years and ten days, which was called saros, was already known in the sixth century B.C. All this information had been obtained over many centuries from observations of celestial phenomena by the people of ancient China, Egypt, India, and Greece.

Those stars that seemed to be attached to a celestial dome and that with the dome underwent daily rotations practically without changing their relative positions were called fixed stars. In their irregular groupings, people attempted to find similarities with animals, mythological personages, and domestic objects. Thus, the stellar sky was divided into constellations that differed among different peoples. However, in addition to such fixed stars, seven moving celestial bodies have been known from time immemorial: the sun, the moon, and five planets named after Roman mythological deitiesMercury, Venus, Mars, Jupiter, and Saturn. In honor of the sun, the moon, and the five planets, seven days of the week were established; the names of the days in a number of languages still reflect this fact. Tracking the motions of the moon and planets through stellar paths was not difficult, since they were readily visible at night against the background of the surrounding stars. The motion of the sun was established through observations of bright stars that appeared at dawnso-called heliacal ascensions. These observations, together with measurements of the midday altitude of the sun above the horizon made with the simplest devices, enabled man to make sufficiently accurate determinations of the suns path among the stars and to trace its annual motion along a great circle of the celestial sphere called the ecliptic, which is inclined toward the equator. Constellations located along the ecliptic were called the zodiac (from the Greek zoonanimal), since many of them bear the names of living creaturesAries, Taurus, Cancer, Leo, and others. In ancient China the stellar sky was studied in detail and divided into 122 constellations, 28 of which were zodiacal. The ancient Chinese prepared a list of 807 stars, which preceded by several centuries the star catalog of the Greek scholar Hip-parchus. However, most peoples had 12 zodiacal constellations, and in the course of a year the sun passed each constellation in approximately one month. The moon and the planets also moved along the zodiacal constellations, although they could extend on each side of the ecliptic by several angular degrees.

While the motion of the sun and the moon always proceeds in one directionfrom west to east (direct motion)the motion of the planets is more complex and at times occurs in the opposite direction (retrograde motion). The planets erratic motions, which did not fall into a simple scheme and did not obey elementary rules, seemed to indicate the existence of their personal will and encouraged their deification by ancient peoples. This and also such awesome phenomena as lunar and especially solar eclipses, the appearance of bright comets, and bursts of new stars gave rise to the pseudoscience of astrology, in which the positions of the planets within the constellations and these awesome phenomena were associated with events on earth and were used to predict the fates of peoples and individuals. Despite its lack of the slightest scientific basis, astrology, which exploits peoples superstitions and ignorance, has nonetheless become widespread and has been accepted by many peoples for a long time. Thus, many rulers, military leaders, and nobles retained special astrologers whom they consulted when making decisions. According to the principles of astrology, the casting of horoscopes, from which imaginary predictions were made, required a knowledge of the zodiacs position with respect to the horizon at the given moment, as well as the positions of the planets. This led to increased astronomical observations, to more accurate determinations of the periods of motion of celestial bodies, and to the formulation of the first theories of planetary motion, which were very incomplete. Thus, astrology, despite its absurdity, at a certain stage promoted the development of the science of astronomy.

Geocentric system of the world. The perfection of the theories of planetary motion required a thorough knowledge of geometry, which was developed in Greece (not earlier than the fourth century B.C.). At that time, Eudoxus of Cnidos, a predecessor of Aristotle, formulated the theory of the homocentric sphere, which has come down to us through Aristotle. According to this theory, each planet is attached to the surface of a hollow sphere that uniformly rotates within another sphere that also rotates about an axis that does not coincide with the axis of rotation of the first sphere. The earth was located at the center of these spheres. The representation of the complex motion of several planets required several such concentric spheres, the total number of which was calculated as 55 by Calippus, a student of Eudoxus. Later, in the third century B.C., the Greek geometer Apollonius of Perga simplified this theory, substituting circles for the rotating spheres. His theory formed the basis of the theory of epicycles, which was finally completed in a treatise known as the Almagest by the ancient Greek astronomer Ptolemy (second century B.C.). It was assumed that all heavenly bodies moved in circles and in uniform motion. The irregular motions of the planetschanges in directions of their motionwere explained by assuming that the planets are simultaneously participating in several uniform circular motions, occurring in different planes and at different velocities. The earth, whose sphericity was taught as early as the sixth century B.C. by the Pythagorean school, was considered to be at rest in the center of the universe. This notion coincided with the direct impression derived from the appearance of the starry sky. The earths circumference was measured in the third century B.C. by Eratosthenes in Alexandria.

In practical applications, the theory of epicycles required the values determining the rotation periods of the planets, the relative inclinations of their orbits, the lengths of the arcs of retrograde motion, and data that could be obtained only through observations by measuring the corresponding time intervals and angles. To accomplish this, different devices and instruments were invented; in the beginning there were simple devices such as the gnomon; later, more complex devices such as the triquetrum and the armillary sphere were used. The latter two made it possible to determine the ecliptic coordinates of the fixed stars. Lists (catalogs) were prepared in ancient times by Shih Shen (China, fourth century B.C.), Timocharis (Greece, third century B.C.), and Hipparchus 150 years later (Greece, second century B.C.). Hipparchus catalog lists 1,022 stars with their ecliptic latitudes and longitudes and magnitude ratings based on a conventional scale of star magnitudes that is used to this day. While comparing his own catalog with that of Timocharis, Hipparchus discovered an increase in the longitude of all the stars and explained this by the motion of vernal equinox, from which the longitude is calculated. This led to the discovery of the phenomenon of precession.

Middle Ages. Ptolemys Almagest, which summed up the astronomical knowledge of his time, for many centuries remained the fundamental treatise on the geocentric system of the world. The emergence of Christianity with its dogmatism, as well as the invasions of the barbarians, led to the collapse of natural science, particularly astronomy, during the Middle Ages. In the course of an entire millennium in Europe, little was added to and much was forgotten about what was known through the work of ancient scholars about the structure of the universe. The Holy Scriptures were law, from which answers to all questions were drawn, including those in astronomy.

Only the Arabs and the people they came into contact with made an attempt through new observations, if not to reform, then at least to refine old theories. In 827, al-Mamun, the caliph of Baghdad, ordered a translation of Ptolemys work from Greek to Arabic. At the turn of the tenth century, the Arabic scholar al-Battani conducted many observations, deriving more precise values for annual precession, inclination of the ecliptic to the equator, and the eccentricity and longitude of the perigee of the suns orbit. Also in the tenth century, the Arabic astronomer Abu al-Wafa discovered one of the disparities (anomalies) in the motion of the moon. Major contributions to the development of astronomy were made by Abu Rayhan Biruni (Khwarizm, end of the tenth century), author of varied astronomical studies. Astronomy continued to flourish among the Arabic peoples and in Middle Asia until the 15th century. Many major scholars studied astronomy along with other sciences in order to improve the accuracy of astronomical constants of the geocentric theory. Especially well known were the astronomical tables prepared in 1252 upon orders from the Castilian ruler Alfonso X by a group of Jewish and Moorish scholars and called Alfon-sine tables. Observational astronomy developed in Azerbaijan, where Nasir al-Din al-Tusi constructed a large observatory in Maragheh. The most prominent observatory in size, quantity, and quality of instruments was the observatory of Ulug Beg in Samarkand, where in 142037 a new large star catalog was prepared. The Arabs rescued Greek classical astronomy from oblivion, renewed the planetary tables, and developed the theory; however, after Ptolemy they did not introduce fundamental changes in astronomy. During this era, astronomical observations were also conducted in China and India.

In the 12th and 13th centuries a revival in the natural sciences also began to take place in Europe. Gradually, and not without the influence of the Arabs, the more enlightened people became acquainted with the science and philosophy of the ancient Greeks, whose treatises were translated into Latin, often from Arabic. Aristotles teachings agreed with church dogma: the geocentric system of the world did not contradict the Scriptures. In Italy, and then in other countries of Western Europe, universities were established, which, although under the strong influence of ecclesiastical scholasticism, promoted the development of the natural sciences.

Heliocentric system of the world. With the expansion of navigation and geographical exploration requiring more precise knowledge of the positions of stars and planets, several outstanding astronomers, mainly German, renewed observations to perfect the planetary tables. Geometry was taught in the leading universities, since it was necessary for mastering the theory of epicycles, and students studied the Almagest, several Latin translations of which were published in Venice (1496, 1515, and 1528) and Basel (1538). All of this favored the discovery of the Polish astronomer N. Copernicus, who acquainted himself at the University of Krakw and later in Italy with all the details of the theory of epicycles. He then returned to Poland and produced a total upheaval in astronomy by revealing the actual structure of the planetary system with the sun in the center and the planets revolving around it, including the earth with its satellite, the moon. Well before this event, in the third century B.C., the ancient Greek astronomer Aristarchus of Samos expressed the idea that the earth moves around the sun, and Heraclitus even earlier conjectured that the earth rotates about an axis. However, only Copernicus worked out and substantiated in every detail a heliocentric system of the world; he subsequently presented it in the work On the Revolutions of Heavenly Bodies, published in Nuremberg in 1543. This work was the key to understanding the universe in its actual structure and not in the form of mathematical abstraction that described only the visible aspects of phenomena. However, the centuries-old deeply rooted ideas about the motionless earth at the center of the universe, which were shared by the church, did not yield to the new theory for a long time; this was not understood even by many of the most outstanding people of that time. It was considered that the Copernican system was only a hypothesis intended for calculating planetary motions, an idea promoted by the publishers introduction to Copernicus book, printed without the authors knowledge. Even the most prominent observer, the Danish astronomer Tycho Brahe (16th century), refused to accept or even understand the heliocentric system. Copernicus theory was finally established by the Italian physicist, engineer, and astronomer Galileo (second half of the 16th century to the first half of the 17th century), who obtained indisputable proof of its validity. G. Bruno (16th century), another ardent advocate of the plurality of inhabited worlds, was burned at the stake in Rome after seven years of imprisonment for this theory, which was considered to be heretical from the churchs point of view. Galileos astronomical discoveries were made with the aid of the telescope, which had been invented shortly before in Holland. Galileo, learning of this invention, made his own telescope during the summer of 1609 in Venice and by the beginning of the following year informed the whole world of his remarkable discoveries. He saw mountains on the moon and discovered discs around planets; the Milky Way proved to consist of innumerable stars that were invisible to the naked eye; and in the Pleiad star cluster he counted more than 40 stars. Then he discovered four satellites of Jupiter, which, revolving around the central planet, formed a miniature copy of the planetary system. The discovery of changes in the phases of Venus testified to the fact that Venus revolves around the sun and not the earth. He also detected spots on the sun, sharing this discovery with the German astronomers C. Scheiner and J. Fabricius. And only then, when the heliocentric system of the world received such brilliant corroboration, did the Catholic Church take measures to ban it, feeling that it undermined the authority of the Holy Scriptures. In 1633, Galileo was forced to repudiate the teachings of Copernicus before a court of the Inquisition. Copernicus work was put on a list (index) of forbidden books; this prohibition was officially removed only after 200 years.

Development of celestial mechanics. J. Kepler, Galileos contemporary and Tycho Brahes assistant in Prague, after Tychos death attained unsurpassed accuracy in his observations of the planets conducted over more than 20 years. Keplers particular attention was attracted by Mars, in whose motion he noted significant departures from all earlier theories. By dint of tremendous work and extensive calculations, he succeeded in discovering the three laws of planetary motion, known as Keplers laws, which have played a major role in the development of celestial mechanics. The first law, which states that the planets move in elliptical orbits whose foci are located at the sun, destroyed the thousand-year-old idea that the orbits of the planets must be circular. The second law determined the variable velocity for the motion of a planet in its orbit. The third law established a mathematical relationship between the dimensions of elliptical orbits and the periods of revolution of the planets around the sun. The tables of planetary motion compiled by Kepler on the basis of these laws markedly surpassed in accuracy previous tables and remained in use throughout the entire 17th century.

Further progress in astronomy was strongly tied to the development of mathematics and analytical mechanics, on the one hand, and with the successes of optics and astronomical instrument-making, on the other. The law of universal gravitation, discovered by I. Newton in 1685, became the foundation of celestial mechanics. Keplers laws were a consequence of this law, but only for the particular case of a planet moving under the effect of attraction of only one central bodythe sun. It became clear that actually in the presence of the mutual attraction between all the bodies of the solar system, the motion of the planets is more complex than described by Keplers laws, and if the latter are still valid for a good approximation, then this is the result of the strong predominant attraction of the massive sun over the attraction of all the remaining planets. Gravitational force, which is expressed by a simple formula for the attractions between two material points, leads to very complex mathematical formulations for the case of several particles or the attraction between bodies consisting of many particles. Such is the case with all the bodies of the solar system, as well as with all cosmic bodies in general. The most complex problem of the motions, the shapes, and the rotations of the planets and their satellites was solved with a high degree of accuracy only as a result of the efforts of many mathematicians, most of all Newton and then J. Lagrange, L. Euler, P. Laplace, C. Gauss, and a number of others. There were brilliant confirmations of the fact that the motion of celestial bodies proceeds basically under the influence of gravitational forces. These included the prediction by the English astronomer E. Halley of the next appearance of the comet now bearing his name, which was brilliantly confirmed, and the calculations by the French scientist A. Clairaut of the moment of transit of the comet through the perihelion in 1759; the discovery of Neptune in 1846 based on the calculations of the French astronomer U. Leverrier; and the discovery by means of calculations of the unseen satellites of several stars, which were subsequently observed with large telescopesfor example, the German astronomer F. Bes-sels calculations in 1844 of Sirius and Procyons satellites. The most complex motion is that of the moon around the earth, but even this was worked out to almost perfect precision. The remaining small deviations from theory in the moons motion, which were earlier attributed to some sort of nongravitational effect, have been explained in the 20th century as errors in calculating time resulting from the irregular rotation of the earth. In this manner celestial mechanics, using data supplied by astrometry, was able to explain and calculate in advance with a very high degree of accuracy almost all the motions observed in the solar system as well as the galaxy and paved the way for extremely difficult experimentsthe launching of artificial earth satellites and space probes.

Telescopic observations. The perfection of the telescope proceeded very slowly at the beginning. Compared to Galileos telescope tube, Keplers proposal to replace the diverging eyepiece lens with a converging lens, which widened the field of view and enabled much greater magnification, was an improvement. Keplers simple eyeglass was then improved on by C. Huygens and is still used today. However, as a result of chromatic and, in part, spherical aberration, the images continued to remain diffused with colored fringes. To reduce the effects of aberration, it was necessary to increase the focal length of the lenses to as much as 45 m, maintaining their relatively small diameters, since at that time large blocks of optical glass could not be cast. However, even with such imperfect instruments, a number of important discoveries were made. For example, in 1655, Huygens discerned Saturns rings; to Galileo, Saturns disc appeared to be elongated or a triple image. Huygens discovered the brightest satellite of Saturn, and G. Cassini discovered four more, less brilliant satellites. In 1675, Cassini noted that the ring consisted of two concentric parts separated by a dark band known as the Cassini division. In 1675, by observing the eclipses of Jupiters satellites, O. Roemer discovered the finite nature of the velocity of light and measured it.

Further improvements in optical instruments took a different course. Erroneously thinking that the dispersion of light is proportional to refraction, Newton concluded that it was impossible to make an achromatic lens. This served as an impetus for the creation of the reflector, in which the image is formed by a concave mirror that is essentially free of chromatism. The gradual perfection of the art of polishing mirrors made from tin-copper alloys facilitated the construction of large high-magnification reflectors. Thus, in 1789, W. Herschel (England) increased the mirrors diameter to 122 cm. However, beginning in the middle of the 18th century, refractors also received substantial improvements. During this time high-dispersion glass (flint glass) was produced and double lenses combining two types of glass appeared. Along with a significant reduction in chromatism, such lenses were also free from spherical aberration. This made it possible to reduce the length of the telescope tube, to increase the penetrating strength of the instruments, and to obtain a sharp image with little fringe chromatism.

With the aid of new instruments, expert observers made many discoveries relating not only to the bodies of the solar system (such as the discovery in 1761 of an atmosphere on Venus and the study of comets by M. V. Lomonosov) but also to the world of faint and distant stars. Many star clusters and nebulas were discovered; nebulas at that time were considered to be star clusters in which individual stars were not visible because of the clusters distance. The first catalogs of such objects were prepared in France by C. Messier in 1771 and 1781; his specifications are still used today. As a result of extensive systematic observations, W. Herschel postulated the boundedness in space of the stellar system and thus strengthened J. Lamberts hypothesis (1764) about the existence of many stellar systems, of which the one which includes the sun is bounded by the Milky Way. Only in the 20th century did this theory of an island universe receive confirmation and further development.

The role of the telescope in astronomy is not exhausted by such discoveries. Perhaps of more importance is the use of the telescope for precise angle measurement. In England in 1640, W. Gascoigne installed crosshairs in the telescopes focus; the crosshairs were visible in the observed objects background and thus increased sighting accuracy by many times ten. He also invented the first eyepiece micrometer for measuring the small angular distances between details of images that were simultaneously visible in the telescopes field of view. In France in 1667, J. Picard furnished telescopes with concentric circles from which angle readings were made with accuracies to the second of arc. This also determined the corresponding accuracy of measurements of the spherical coordinates of stars, without which further progress in astrometry and stellar astronomy would not have been possible. Having applied such instruments to his works in triangulation in France, Picard obtained new, more accurate dimensions of the earth, which Newton used to discover the law of universal gravitation. Measuring the relative positions of the components of binary stars with the aid of an eyepiece micrometer, W. Herschel in 1803 established that many of them formed physically bound mutual gravitational systems consisting of two and sometimes more stars revolving around a common center of mass in accordance with Keplers laws. This conclusively proved the universality of gravitation in all parts of the universe. Comparing his telescopic determinations of the coordinates of stars with those of the ancient Greeks (Hipparchus, Timocharis), Halley noted in 1718 that three bright starsAldebaran, Sirius, and Arcturushad changed their positions to such an extent that it could not be explained by errors in previous observations. Thus, the proper motion of stars was discovered. By 1783 the number of stars with known proper motion had increased to 12. Studying them, W. Herschel concluded that part of the proper motion of every star is a reflection of the motion of the solar system in space and determined the direction of this motion (toward the constellation Hercules). All of this helped to initiate the study of the distribution and motion of stars in the Milky Way system, which was subsequently called a galaxy. Telescopic observations led the English astronomer J. Bradley in 1725 to the discovery of light aberration, which he correctly explained by the finite velocity of light, and in 1748 to the discovery of nutation of the earths axis.

One of the most fundamental and difficult problems in astronomy has always been the determination of the astronomical unitthe mean distance between the earth and the sunwhich is the basic unit of measurement for all distances in the universe. Many attempts have been made to solve the problem, and all of them, as the methods and technology of observation improved, have led to larger and larger values of this unit. The first results that approximated the actual value were obtained using the methods proposed by Halleyobserving the transit of Venus along the solar disc from various points on the earth in 1761,1769,1874, and 1882 and thus determining the parallax of the sun. The latter, together with the knowledge of the earths dimensions, makes it possible to calculate the astronomical unit. Numerous expeditions were made to observe these transits. The first expedition was apparently conducted in Northern Europe and Siberia. S. Ia. Rumovskii of the St. Petersburg Academy of Sciences observed the transit at Selenginsk, near Baikal. The analysis of all observations led to a solar parallax value from 8.5 to 10.5. Rumovskii observed the transit in 1769 in Kola, and I.I. Islinev observed it at Yakutsk. However, the hopes of making an accurate determination of the suns parallax were not realized, and after discoveries in 1801 of asteroids, some of which came close to the earth, another possibility of determining the important astronomical constant appeared. As a result of determinations made in the 19th century, the value of 8.80 was accepted for the parallax of the sun, which fixes the value of the astronomical unit at 149.5 million km. In the 1960s, on the basis of radar measurement, the astronomical unit was determined to have a value of 149.6 million km.

Of fundamental importance were the first determinations of the distances to stars from measurements of annual parallax. As observations improved, it became clear that parallax, in essence a perspective of star displacement caused by the annual movement of the earth around the sun, is of extremely small value. Attempts to detect such star displacements, which were begun shortly after the brilliant discoveries of Copernicus and which led to a series of startling discoveriesaberration of light, the physics of binary stars, and invisible satellites of the starswere unsuccessful for a long time. By the time of W. Herschel it became apparent that the parallaxes of even the nearest stars did not exceed 1, and such angles could not be measured with the instruments of that time. Only V. Ia. Struve in 1837 at Dorpat and F. Bessel in 1838 at Knigsberg succeeded in making the first reliable measurements of the parallaxes for the stars Vega and 61 Cygni. Thus the first correct scale of distances in the universe was determined. Struves and Bessels work was based on visual telescopic observations. Since the beginning of the 20th century, measurements of star parallax have been conducted using exclusively astrophotographic methods. The subsequently found star that is closest to us has a parallax of 0.76 and thus corresponds to a distance of 1.3 parsecs (4.3 light-years).

An important trend in astronomy was the preparation of star catalogs containing the most accurate coordinates of stars. The value of these catalogs is so great that they have been referred to as the foundation of astronomy. They are needed for scientific purposes, in part to determine astronomical constants and to study motion in the universe, as well as for applied purposesgeodesy, cartography, geographical exploration, sea navigation, and astronautics. Observatories at Greenwich (founded in 1675), Pulkovo (1839), Washington, D. C. (1842), and Capetown, South Africa (1820), have contributed much in these areas.

At the end of the 18th century information about the solar system was enriched by the discovery of the planet Uranus in 1781. Study of the principles of its motion led in 1846 to the discovery of Neptune and in 1930 to the discovery of Pluto, the farthest planet from the sun. In 1801 the first asteroid was discovered; presently (end of the 1960s) more than 1,700 such bodies are known. Some of them are of great interest because of the character of their motion (for example, the Trojan asteroids) and others because of their close passage to the earth.

Development of astrophysics. Until the middle of the 18th century, of the branches of astronomy constituting modern astrophysics, only photometry, which was initially limited by visual estimates of the brightness of stars, received experimental development in the works of the French scientist P. Bouguer (1729) and theoretical grounding in the studies of the German scientist J. Lambert (1760). It was finally shown then that the sun is a star that differs from other stars only in its proximity to us and that if it were removed to stellar distances it would in no way differ from other stars. Study of a number of stars of different dimensions led V. Ia. Struve in 1847 to deduce the existence of light absorption in interstellar space, a phenomenon finally verified in 1930 by the American astronomer R. Trumpler. Great and ever-increasing possibilities for investigating the physical nature and chemical composition of stars have been made through the development of spectral analysis (R. Bunsen and G. Kirchhoff, 1859). W. Huggens and J. Lockyer in England, A. Secchi in Italy, and P. J. Janssen in France pioneered the application of spectral analysis to the sun, stars, and nebulas. In 1842 the Czech physicist C. Doppler formulated his renowned principle, the Doppler effect, which was refined by A. Fizeau in 1848 and experimentally verified by A. A. Belopolskii under laboratory conditions in 1900. Dopplers principle received widespread application in astronomy in measuring motion along the line of sight, the rotation of stars, the turbulence in the suns photosphere, and other phenomena and in the most diverse branches of physics. Spectral analysis facilitated a more intensive study of variable stars, which began around the end of the 18th century. It also helped detect many spectrally binary stars, whose components are so close to each other that they cannot be observed separately even with the most powerful telescopes.

Photography, invented in 1839, received wide application in astronomy when dry photographic plates appeared. Photography was especially useful when combined with photometry, spectroscopy, and astrometry. It permitted detailed and in-depth study of the structure, chemical composition, and motion of various celestial objects. Photoemulsions used as radiation detectors with great success replaced the eye in many astronomical observations, increasing accuracy, objectivity, and data storage and also fixing visually elusive, rapidly occurring processes and the presence of faint celestial bodies. The advantages and possibilities of photography became so evident that in 1888 an international plan was initiated to prepare a photographic catalog of the stars of the entire sky, including those as small as the 11th star magnitude (a total of about 3.5 million), and to prepare maps containing about 30 million stars to the 14th star magnitude (about 22,000 pages). Execution of this plan involved the participation of 18 of the worlds observatories. Since then, astrophotography has occupied a permanent place in astronomical observations.

Twentieth century. Astronomy in the 20th century is characterized by major advances in observation techniques. Large reflectors are being built in which the metallic mirrors, which darken rapidly, are being replaced with glass mirrors, which are chemically silver-plated or aluminum-coated by high-vacuum cathode sputtering. In the USA several large reflectors have been built: in 1908, with a mirror diameter of 152 cm; in 1917, 254 cm; in 1948, 508 cm; and in 1959, 305 cm. In the USSR a reflector with a 260-cm mirror became operational in 1960; a reflector with a mirror 600 cm in diameter is being mounted. Such instruments with modern light detectors can detect stars to the 25th star magnitude. These are 1010 times dimmer than the brightest stars.

Major success has been achieved in producing new types of detectors. The sensitivity of photoemulsions has been increased by many times, and the spectral region has been widened. Photoelectric multipliers, electron-optic converters, methods of electronic photography, and television (television telescopes) have significantly increased the accuracy and sensitivity of photometric observations and, moreover, have extended the spectral range of recorded radiation. Improvements in spectral apparatus permitted obtaining spectrograms with very high dispersions on the one hand and recording the spectra of very faint celestial bodies on the other. It became possible to observe distant galaxies located billions of light-years from us.

A new, rapidly growing branch of astronomyradio astronomywas born when it was discovered in the 1930s that we receive electromagnetic radiation in wave bands from millimeters to meters from many points in the celestial sphere. Many of the sources of this radiation were identified as galaxies. However, in the 1960s powerful sources almost point-like in nature were located that proved to be faintly luminous objects with unusual optical spectra; they lacked dark absorption lines and had only a few emission lines. The latter could be identified as lines of hydrogen and of several other elements. They were very strongly shifted toward the longer wavelengths; the red shift, subsequently interpreted as the Doppler effect, attests to their immense distance of billions of light-years from us. These puzzling objects, whose radiation apparently is synchrotonic, are called quasars. Even more puzzling are the radio-emitting sources of power varying with periods of the order of seconds, called pulsars. With the help of radio astronomical observations, the distribution of interstellar hydrogen in the galaxy has been studied and the galaxys spiral structure has been confirmed.

The energy of the stars, and specifically of the sun, is generated in their inner depths by nuclear processes at temperatures reaching tens of millions of degrees. These processes are accompanied by the emission of special particlesneutrinospossessing high penetrating ability. The study of neutrinos led to the formation of yet another branch of astronomyneutrino astronomy.

Modern computer technology has found wide application in processing observations and has opened up new vistas in stellar mechanics and astrophysics, particularly in the calculation of the motion of artificial satellites and interplanetary rockets.

Significant advances have been made in the study of the sun. Special narrow-band filters have made it possible to study the distribution and motion of individual elementshydrogen, helium, and calciumin the suns chromosphere. The development of special methods and apparatus permitted the study of the suns corona on clear days when there is no eclipse; the Zeeman effect permitted the study of the suns magnetic field, which determines a number of solar and terrestrial phenomena.

Considerable new information has been obtained about the motions of stars and the distances to them. However, direct trigonometric methods of determining parallax even with modern measurement accuracy is limited by distances of about 100 parsecs. Methods that have been worked out to determine the luminosity of stars according to the character of their spectra have made it possible to determine distances to more distant stars by means of photometry. Finally, the pulsating variable starscepheidswhose period of brightness variation is closely related to luminosity, also became objects that allowed astronomers to measure distances to remote star clusters and galaxies where these stars are observed. As a result of the extensive work of Russian and Soviet scientists, intense development has taken place in the study of variable stars. An international center for systematizing these studies is located now in Moscow.

Great interest has been centered around the red shift, a phenomenon theoretically foreseen by the Soviet scientist A. A. Fridman in 1922 and studied by the American astronomer E. Hubble in 1929. In this phenomenon, the spectral lines of distant galaxies are shifted toward the red. If the shift is interpreted as a Doppler effect, then it indicates that the galaxies are receding at speeds proportional to their distances: in other words, the observable part of the universe is generally expanding. With respect to our galaxy, the red shift made it possible to measure the galaxys dimensions and total mass and to indicate that the suns position is far from the center of the galaxy. The rotation of our galaxy was detected on the basis of statistical analysis by the Russian astronomer M. A. Kovalskii in 1859 and was studied in detail by the Dutch astronomer J. Oort in 1927.

Of great importance in the study of stellar systems and stellar evolution is the relationship between luminosity and spectral class as expressed by the Hertzsprung-Russell diagram. This enables astronomers to form a clearer picture of a stars life cycle. Progress in modern physics helped to locate and study sources of stellar energy and to develop a theory of stellar evolution based on nuclear processes occurring in the inner depths of stars. In turn, results of astrophysical research have significantly influenced the successes of nuclear physics. The idea of evolution developed much earlier in astronomy than in other natural sciences. The cosmogonic hypothesis formulated by I. Kant as early as 1755 clearly reflected this idea. The recognition gradually developed that the world did not come into existence as the result of a single act of creation but that the formation of stars, planetary systems, and other celestial bodies is a continuous process still in progress. Confirmation of this idea was seen in the regularities of stellar associations, the study of which was begun by V. A. Ambartsumian in 1946. These associations consist of widely dispersed clusters of relatively young stars of similar origin whose age is estimated to be the same, at several millions of years, while the age of our sun is calculated to be in the billions of years.

Study has begun of another important cosmogonic factor that plays a major role in the processes of the interstellar mediuminterstellar magnetic fields. Earlier cosmogonic theories developed considering only inertial forces and forces of universal gravitation; today, however, other effects, such as light pressure and magnetic forces, are taken into consideration.

Scientific work in astronomy is conducted at astronomical observatories and scientific research institutes. The most important among these are the long-established Greenwich Astronomical Observatory (founded in 1675), now moved from the outskirts of London to the south of England to Hurstmonceaux Castle; the Pulkovo Central Astronomical Observatory of the Academy of Sciences of the USSR (1839) near Leningrad; the P. K. Shternberg State Astronomical Institute, which includes the Moscow Astronomical Observatory (1830); the U.S. Naval Observatory (USA, 1842); the Royal Observatory (South Africa, 1820); the Lick Astronomical Observatory (USA, 1888); the Yerkes Astronomical Observatory (USA, 1897); the Crimean Astrophysical Observatory of the Academy of Sciences of the USSR, formed from the Simeiz Observatory established in 1908; and the Biurakan Astrophysical Observatory of the Academy of Sciences of the Armenian SSR (1946).

Because of the multitude of bodies studied in astronomy, the question arose long ago of coordinating and unifying scientific efforts in various countries by the organization of international astronomical societies and the publication of appropriate journals. The journal Astronomische Nachrichten, which was of international importance until World Warl, was founded in 1821 in Germany. In other countries where astronomical research is developed, scientific astronomical journals are also published; for example, in the USSR the Astronomicheskii zhurnal has been published regularly by the Academy of Sciences of the USSR since 1924.

An astronomical societyAstronomische Gesell-schaftwas formed in Germany in 1863; it organized the compilation, by 13 observatories in various countries, of a large catalog with accurate coordinates of stars in the northern celestial hemisphere. To a certain degree the British Royal Astronomical Society also played an important international role. After World War I, the functions of coordinating scientific work were transferred to the International Astronomical Union, established in 1919, which holds large conferences every three years to sum up results and discuss plans for the further development of astronomy. In pre-revolutionary Russia there were several small scientific or amateur societies, on the basis of which the Ail-Union Astronomical-Geodetic Society was formed in 1932.

The first artificial earth satellite was launched by the USSR in 1957. For the first time, scientific devices were carried beyond the limits of the earths atmosphere, which, with its limited transparency, turbulence, and heterogeneity, inhibits and greatly restricts astronomical observations. The development of extra-atmospheric astronomy began to have an extremely promising future. Astronomy itself, which until now was only able to observe but not to control phenomena in the cosmos, is now becoming an experimental science, capable of investigating cosmic space and studying celestial bodies, particularly the moon and the closest planets, by experiments carried out on these bodies. In the not too distant future, astronomical observatories will be constructed on the moon. However, only the correlation of extra-atmospheric observation with surface-based ones will give the most complete and valuable understanding of the universe.

See the original post here:
Astronomy | Article about astronomy by The Free Dictionary

 Posted by at 5:48 pm  Tagged with:

OBAMA SNUB? Reportedly avoids NATO chief amid growing Russia threat

 NATO  Comments Off on OBAMA SNUB? Reportedly avoids NATO chief amid growing Russia threat
Mar 252015

FILE – In this Feb. 5, 2014 file photo, NATO Secretary General Jens Stoltenberg speaks during a media conference at NATO headquarters in Brussels. (AP Photo/Virginia Mayo, File)

President Barack Obama reportedly will not meet with NATO’s new secretary general when he is in Washington this week, despite requests from the alliance chief’s staff for a get-together.

Bloomberg View reported Tuesday that Jens Stoltenberg’s office requested a meeting with Obama in advance of his scheduled visit, but did not receive any response from the White House. Instead, Bloomberg View reported that Stoltenberg had to settle for a last-minute meeting with Defense Secretary Ashton Carter.

Stoltenberg is scheduled to be in Washington through Thursday, primarily so he can attend a strategic brainstorming session involving military officials and experts from the U.S and NATO.

Stoltenberg, who replaced Anders Fogh Rasmussen as head of the world’s largest military alliance in October, was able to meet with Canadian Prime Minister Stephen Harper Monday, the day before Harper announced that Canada would expand its participation in the U.S.-led military campaign against ISIS in Iraq and Syria.

The report of Obama’s snub comes amid Russia’s growing willingness to test NATO’s military readiness. On Tuesday, NATO jets were scrambled after four Russian military planes were spotted flying over the Baltic Sea with their transponders turned off. Over the weekend, a Danish newspaper published remarks by the Russian ambassador to Denmark in which he hinted that Russian missiles could target Danish warships if Copenhagen joins NATO’s missile defense system.

But the most far-reaching example of Russianbelligerence came Tuesday, when Britain’s Daily Telegraph reported that Moscow was preparing to lease 12 long-range bombers to Argentina in exchange for shipments of beef and wheat. The report comes after a round of rhetoric from Russian officials questioning Britain’s claim to the Falkland Islands.

The Telegraph reports that Russia’s ambassador to Britain, Alexander Yakovenko, compared a 2013 referendum in which 99.8 percent of Falklands inhabitants voted to remain part of the U.K. to last year’s vote which formalized Crimea’s annexation by Russia. Britain, along with the U.S. and NATO, denounced the Crimea referendum as a sham orchestrated by Moscow.

British Foreign Secretary Philip Hammond repeated those claims earlier this week, prompting the Russian embassy to respond, “In its rhetoric [the] Foreign Office applies one logic to the referendum in the Malvinas/Falklands, and a different one to the case of Crimea.”

Alexei Pushkov, the head of the Dumas committee of international affairs, was even more blunt in a Twitter message that read, in part, “Crimea has immeasurably more reason to be a part of Russia than the Falkland Islands to be part of the U.K.”

Continued here:
OBAMA SNUB? Reportedly avoids NATO chief amid growing Russia threat

NATO scrambles fighter jets after Russian military planes spotted over Baltic Sea

 NATO  Comments Off on NATO scrambles fighter jets after Russian military planes spotted over Baltic Sea
Mar 252015

FILE – In this Friday, May 9, 2014 file photo Russian bombers Tu-22M3 fly in formation during a Victory Day Parade in Moscow commemorating the 1945 defeat of Nazi Germany. (AP Photo/Pavel Golovkin, File)

STOCKHOLM The Swedish Air Force and NATO jets on Tuesday tracked four Russian combat aircraft flying with their transponders turned off over the Baltic Sea, officials said.

The Russian planes two long-range, nuclear-capable Tu-22M3 bombers and two Sukhoi Su-27 fighters were flying in international airspace, according to Sweden’s Armed Forces and alliance sources.

NATO said it scrambled Danish jets and Italian jets based in Lithuania early Tuesday to identify the Russian aircraft which it said were heading to the Russian Baltic exclave of Kaliningrad.

“The Russian military aircraft did not use their onboard transponder; they were not in contact with civilian Air Traffic Control and they were not on a pre-filed flight plan,” a NATO military officer said on condition he not be identified by name in keeping with alliance practice.

Swedish Foreign Minister Margot Wallstrom said it was “unacceptable” for the Russian planes to be flying with shut-off transponders that are necessary for identifying aircraft on radar, calling it violation of international aviation rules.

“This has happened now on a number of occasions and in a very challenging way,” Wallstrom told reporters in Stockholm. “We are tired of always having to protest against this kind of … breach of rules.”

NATO and Sweden, which is not a member of the alliance, have reported an increase in Russian air maneuvers over the Baltic Sea in recent years.

Tuesday’s sighting comes as Finnish and Swedish military aircraft are preparing to train with U.S. fighters over the Baltic Sea, and American and NATO forces continue military exercises in the Baltic countries.

The Swedish military said the threat against Sweden had not grown but that the armed forces were watching the “increased activity” in the region.

Read the original post:
NATO scrambles fighter jets after Russian military planes spotted over Baltic Sea

 Posted by at 8:52 am  Tagged with:

Russia Threatens Denmark Wiith Nuclear Attack: Danish navy may be target due to NATO defence shield – Video

 NATO  Comments Off on Russia Threatens Denmark Wiith Nuclear Attack: Danish navy may be target due to NATO defence shield – Video
Mar 242015

Russia Threatens Denmark Wiith Nuclear Attack: Danish navy may be target due to NATO defence shield
Tough talk from Russia as it threatens to use nuclear weapons against Denmark. Moscow has warned that if Denmark joins NATO's missile defence shield, the Danish navy will be a fair target for…


Go here to read the rest:
Russia Threatens Denmark Wiith Nuclear Attack: Danish navy may be target due to NATO defence shield – Video

 Posted by at 1:53 am  Tagged with:

NATO secretary general tells Canada and allies to keep Russia in check

 NATO  Comments Off on NATO secretary general tells Canada and allies to keep Russia in check
Mar 242015

NATOs top official says Canada and the rest of the military alliance should be prepared to keep in place efforts to deter Russian aggression in Europe for years.

Jens Stoltenberg, Secretary-General of the North Atlantic Treaty Organization, made a brief stop in Canada on Monday to meet Stephen Harper and discuss alliance business.

Its been more than one year since Russian President Vladimir Putin annexed Ukraines Crimean Peninsula a shock to European security that breathed new life into NATO and its Cold War collective defence pact.

Russias belligerent turn continues unabated, with a shaky ceasefire between Russian-backed rebels and Kiev in eastern Ukraine and military exercises close to Estonia. On Saturday, Moscows Ambassador to Denmark, Mikhail Vanin, threatened to train nuclear missiles on Danish warships if Copenhagen joins a U.S.-led missile defence shield; Denmarks frigates would carry special radar systems as part of the effort.

Mr. Stoltenberg rejected Russias concerns about the program. Its a defensive system and Russians know its not targeted at Russia, he said in an interview Monday.

He said the Russian ambassadors comments are part of a pattern weve seen over time where Moscow has beefed up military spending, dispatched bombers on more training runs in international airspace, demonstrated the willingness to use force and featured talk of its nuclear arsenal prominently in messaging.

NATO has reacted in the past year by overhauling its defence plans and moving troops, airplanes and warships closer to its eastern flank. Canada has joined air patrols along the Baltic states that border Russia, deployed troops to joint NATO exercises in the region and assigned a vessel to allied patrols in the Black Sea and Mediterranean.

The alliance has created a 5,000-troop rapid reaction force that can be deployed in Europe within 48 hours and is more than doubling the size of its existing NATO reaction force to 30,000 soldiers.

Its also creating six command and control centres in the Baltic states and the member countries along its eastern flank, including Poland, Bulgaria and Romania, that could co-ordinate military action should the need arise.

The response is to make sure our deterrence is credible in the future, Mr. Stoltenberg said.

View original post here:
NATO secretary general tells Canada and allies to keep Russia in check

NATO leaders balk at Russia's threat to nuke warships

 NATO  Comments Off on NATO leaders balk at Russia's threat to nuke warships
Mar 242015

U.S. troops place a Patriot air and missile defense launching system at a test range in Sochaczew, Poland, March 21, 2015, as part of a joint exercise with Polish troops to demonstrate the U.S. Army’s capacity to deploy Patriot systems rapidly within NATO territory. Getty

BUCHAREST, Romania — Britain’s defense secretary says NATO members Romania and Britain will not be intimidated by threats against members of the military alliance.

“Neither Romania nor Britain will be intimidated by threats to its alliance or its members,” Defense Secretary Michael Fallon said Monday during a one-day visit.

His remarks came days after Russia’s ambassador to Denmark, Mikhail Vanin, said in a published report that Danish warships could become targets for Russian nuclear missiles if the Danes join the alliance’s missile defense system. Bases are planned in the southern Romanian town of Deveselu and in Poland.

“I do not think Danes fully understand the consequences of what happens if Denmark joins the U.S.-led missile defense. If this happens, Danish warships become targets for Russian nuclear missiles,” Vanin was quoted as saying by the newspaper Jyllands-Posten on Saturday.

Should Danes join “we risk considering each other as enemies,” he added.

Vanin’s comments prompted an angry response from Danish Foreign Minister Martin Lidegaard, who said they were “unacceptable” and that Vanin had “crossed the line” by saying that “everyone who joins” the shield “in the future will be a target for Russian ballistic missiles.”

However, Lidegaard added that “it is important that the tone between us doesn’t escalate.”

“It never has and never had anything to do with Russia,” Lidegaard said about the missile shield, saying the defense system was aimed at protecting against rogue states or terrorist organizations, among others.

U.S. Ambassador to Denmark Rufus Gifford wrote on Twitter Saturday that Vanin’s comments “do not inspire confidence” or contribute to peace and stability.

View original post here:
NATO leaders balk at Russia's threat to nuke warships

 Posted by at 1:53 am  Tagged with:

Russia threatens Denmark over NATO shield

 NATO  Comments Off on Russia threatens Denmark over NATO shield
Mar 222015

Russia threatened to aim nuclear missiles at Danish warships if Denmark joins NATO’s missile defence system, in comments Copenhagen called unacceptable and NATO said would not contribute to peace.

Denmark said in August it would contribute radar capacity on some of its warships to the missile shield, which the Western alliance says is designed to protect members from missile launches from countries like Iran.

Moscow opposes the system, arguing that it could reduce the effectiveness of its own nuclear arsenal, leading to a new Cold War-style arms race.

In an interview in the newspaper Jyllands-Posten, the Russian ambassador to Denmark, Mikhail Vanin, said he did not think Danes fully understood the consequences of joining the programme.

“If that happens, Danish warships will be targets for Russian nuclear missiles,” Vanin told the newspaper.

Asked to respond, NATO spokeswoman Oana Lungescu said Denmark was a staunch member of the alliance and NATO would defend all allies against any threat.

“We have made clear that NATO’s ballistic missile defence is not directed at Russia or any country, but is meant to defend against missile threats. This decision was taken a long time ago, so we are surprised at the timing, tone and content of the statements made by Russia’s ambassador to Denmark,” she said.

“Such statements do not inspire confidence or contribute to predictability, peace or stability,” she added.

Tensions between Moscow and the West have grown since the imposition of economic sanctions on Russia over a pro-Russian rebellion in eastern Ukraine. NATO has recorded increased activity by the Russian navy and air force in the Nordic region.

No missiles are to be placed on Danish soil under the NATO programme, but they could be deployed some day in Greenland, a part of the kingdom, according to Jyllands-Posten.

Read the rest here:
Russia threatens Denmark over NATO shield

Total solar eclipse fans invade Faeroe Islands for a rare glimpse of blackout

 Islands  Comments Off on Total solar eclipse fans invade Faeroe Islands for a rare glimpse of blackout
Mar 192015

A visitor looks at solar eclipse posters displayed for sale at the tourist office, in Torshavn, the capital city of the Faeroe Islands, Wednesday, March 18, 2015. The Faeroe Islands, a semi-autonomous Danish archipelago, and Svalbard, a Norwegian archipelago in the Arctic Ocean, are the only two places in the world where, cloud cover permitting, a total solar eclipse can be viewed from land on Friday morning. (AP Photo/Matt Dunham)(The Associated Press)

Two women, walk beside the harbor, in Torshavn, the capital city of the Faeroe Islands, Wednesday, March 18, 2015. The Faeroe Islands, a semi-autonomous Danish archipelago, and Svalbard, a Norwegian archipelago in the Arctic Ocean, are the only two places in the world where, cloud cover permitting, a total solar eclipse can be viewed from land on Friday morning. (AP Photo/Matt Dunham)(The Associated Press)

A woman walks along a coastal road in Torshavn, the capital city of the Faeroe Islands, Wednesday, March 18, 2015. The Faeroe Islands, a semi-autonomous Danish archipelago, and Svalbard, a Norwegian archipelago in the Arctic Ocean, are the only two places in the world where, cloud cover permitting, a total solar eclipse can be viewed from land on Friday morning. (AP Photo/Matt Dunham)(The Associated Press)

Meteorologist Soren Jacobsen points towards the Faeroe Islands on a graphic showing the weather forecast for 09:00 GMT, approximately 40 minutes before Friday’s total solar eclipse over the Faeroe Islands during a press conference in Torshavn, the capital city of the Faeroe Islands, Wednesday, March 18, 2015. The Faeroe Islands, a semi-autonomous Danish archipelago, and Svalbard, a Norwegian archipelago in the Arctic Ocean, are the only two places in the world where, cloud cover permitting, a total solar eclipse can be viewed from land on Friday morning. (AP Photo/Matt Dunham)(The Associated Press)

Solar eclipse postcards are displayed for sale at the tourist office, in Torshavn, the capital city of the Faeroe Islands, Wednesday, March 18, 2015. The Faeroe Islands, a semi-autonomous Danish archipelago, and Svalbard, a Norwegian archipelago in the Arctic Ocean, are the only two places in the world where, cloud cover permitting, a total solar eclipse can be viewed from land on Friday morning. (AP Photo/Matt Dunham)(The Associated Press)

TORSHAVN, Faeroe Islands For months, even years, accommodation on the remote Faeroe Islands has been booked out by fans who don’t want to miss an almost three-minute-long astronomical sensation. Now they just have to hope the clouds will blow away so they can fully experience Friday’s brief total solar eclipse.

Scores of eclipse chasers and scientists have invaded the archipelago armed with telescopes, cameras and glasses for safe direct solar viewing ahead of the big event.

The weather forecast is better more than 2,000 kilometers (1,270 miles) to the northeast, in the Arctic islands of Svalbard, where spectators can hope for a clear day. The full eclipse will only be seen in a narrow path across the northern hemisphere, reaching the Faeroes at 0945 GMT on Friday.

“This is our 10th total eclipse. We love to watch them and being able to look at the corona with your eyes in the middle of the eclipse is really an exciting moment, to experience the diamond rings coming and going,” said Les Anderson, a 60-year-old from San Diego, California, in Torshavn, capital of the Faeroes.

The population of the 18 rocky islands between Scotland and Iceland has swelled by approximately 10,000 for a few days from its normal 48,000 souls.

Originally posted here:
Total solar eclipse fans invade Faeroe Islands for a rare glimpse of blackout

Shootout at Copenhagen cafe free speech event

 Free Speech  Comments Off on Shootout at Copenhagen cafe free speech event
Mar 102015

By Jan M. Olsen And Karl Ritter Associated Press

COPENHAGEN, Denmark (AP) A shooting at a free speech event featuring an artist who had caricatured the Prophet Muhammad and a second shooting hours later outside a synagogue left two dead and five police officers wounded in Copenhagen, stirring fears that another terror spree was underway in a European capital a month after 17 people were killed in Paris attacks.

Police couldn’t say whether the shootings at a cultural center Saturday afternoon and in front of the synagogue early Sunday were connected, but didn’t rule it out. In both shootings, the gunman got away.

“We are looking for two perpetrators,” police spokesman Allan Wadsworth-Hansen told reporters.

In this photo dated Saturday Feb. 14, 2015, issued by Copenhagen Police believed to show the suspect in a shooting at a freedom of speech event in Copenhagen, in a photo taken from a street camera near to where the getaway car was later found dumped. In what is seen as a likely terror attack against a free speech event organized by an artist who had caricatured the Prophet Muhammad, the police believe there was only one shooter in the attack on a Copenhagen cafe that left one person dead and three police officers wounded. (AP Photo /Copenhagen Police) DENMARK OUT – NO SALES (Copenhagen Police/AP)

Two hours later, police announced they had shot and killed a man who shot at them near a train station and were investigating whether he could be linked to the two shootings. The police statement posted online says the shooting occurred after they had put an address near the train station under observation. The statement said no police officers were wounded.

The first shooting happened shortly before 4 p.m. Saturday. Danish police said the gunman used an automatic weapon to shoot through the windows of the Krudttoenden cultural center during a panel discussion on freedom of expression following the Paris attacks. A 55-year-old man attending the event was killed, while three police officers were wounded. Two belonged to the Danish security service PET, which said the circumstances surrounding the shooting “indicate that we are talking about a terror attack.”

The gunman then fled in a carjacked Volkswagen Polo that was found later a few kilometers (miles) away, police said.

Lars Vilks, a Swedish artist who has faced numerous death threats for caricaturing the Prophet Muhammad, was one of the main speakers at the event, titled “Art, blasphemy and freedom of expression.” He was whisked away by his bodyguards unharmed as the shooting began.

Vilks, 68, later told The Associated Press he believed he was the intended target of the shooting.

Go here to read the rest:
Shootout at Copenhagen cafe free speech event

 Posted by at 2:40 am  Tagged with:

One Day in Saint Thomas, US Virgin Islands (HD Travel Documentary) – Video

 Islands  Comments Off on One Day in Saint Thomas, US Virgin Islands (HD Travel Documentary) – Video
Mar 092015

One Day in Saint Thomas, US Virgin Islands (HD Travel Documentary)
Saint Thomas is one of the three beautiful islands that conform the US Virgin Islands Archipelago. The European flavour can still be smelled on Saint Thomas' streets after 140 years of Danish…

By: Lonely Visions

View post:
One Day in Saint Thomas, US Virgin Islands (HD Travel Documentary) – Video

 Posted by at 2:45 am  Tagged with:

NATO to wait and see on Afghan progress

 NATO  Comments Off on NATO to wait and see on Afghan progress
Feb 222015

NATO will wait and see how Afghan forces perform in the upcoming fighting season before assessing whether they’ll need the help of foreign forces, including Australians, beyond the end of next year.

General Knud Bartels, Danish chairman of NATO’s military committee, said Afghanistan was on the right track to become a stable and secure nation.

The general, who’s visiting Australia for talks on security issues, said that for the first time Afghan National Security Forces were responsible for their entire country.

About 12,000 foreign troops including 400 Australians remain in Afghanistan to train and assist Afghan forces under the NATO Resolute Support Mission.

That ends at the end of 2016, raising concerns that Afghan forces will struggle as they confront a resurgent Taliban without foreign assistance.

General Bartels said this was just the start of Resolute Support, and there was a year to assess how the situation was unfolding.

‘There is no doubt we need to have a pragmatic approach as to timelines in 2015 and particularly the fighting season in 2015,’ he said.

‘During this process we will conduct consultations with the 28 allies who are our partners in this endeavour to define we are going to move beyond the end of 2016.’

General Bartels said Afghanistan was moving in the right direction.

‘It doesn’t mean there are no challenges. It doesn’t mean that there is a 100 per cent guarantee at the end of the day. But I would say the chances are increasing on a daily basis for positive outcomes on Afghanistan.’

View post:
NATO to wait and see on Afghan progress

Shots fired at Danish cafe hosting free speech debate man …

 Free Speech  Comments Off on Shots fired at Danish cafe hosting free speech debate man …
Feb 192015

A 22-YEAR-OLD with a history of violence has been named by police as the suspect behind the Danish shooting rampage that left two dead and several more wounded.

CARNAGE: The terrorist’s shooting spree began after an attack on a cafe hosting a free speech event [REUTERS]

Omar El-Hussein had a criminal record which included convictions for weapon offences.

He was gunned down by police close to a Copenhagen train station in the early hours of Sunday morning after he opened fire on them.

Police believe he was responsible for attacks on a cafe and a deadly assault on a synagogue.

His killing spree is believed to have been inspired by the Charlie Hebdo terrorist attack in France last month.

Danish investigators currently do not suspect El-Hussein had visited any overseas jihadist training camps.

Investigator Joergen Skov said no one else was involved in the two attacks in which one man was shot in the head near a synagogue and another killed at a freedom of speech event.

TRIBUTE: Denmark’s Prime Minister Helle Thorning-Schmidt places flowers in front of the synagogue in Krystalgade in Copenhagen [REUTERS]

SUSPECT: Omar El-Hussein has been named as the suspect behind the shootings [TWITTER]

Follow this link:
Shots fired at Danish cafe hosting free speech debate man …

 Posted by at 11:41 am  Tagged with:

Islamic terrorism attack on Lars Vilks free speech event in Copenhagen – 1 dead, 3 injured – Video

 Free Speech  Comments Off on Islamic terrorism attack on Lars Vilks free speech event in Copenhagen – 1 dead, 3 injured – Video
Feb 162015

Islamic terrorism attack on Lars Vilks free speech event in Copenhagen – 1 dead, 3 injured
COPENHAGEN, Denmark A gunman fired on a cafe in Copenhagen as it hosted a free speech event Saturday, killing one man, Danish police said. The event was organized by Swedish artist Lars…

By: AlohaSnackbar01

See the rest here:
Islamic terrorism attack on Lars Vilks free speech event in Copenhagen – 1 dead, 3 injured – Video

 Posted by at 3:41 pm  Tagged with:

Denmark shooting: Prime Minister Thorning-Schmidt says ‘terrorist attack – Video

 Free Speech  Comments Off on Denmark shooting: Prime Minister Thorning-Schmidt says ‘terrorist attack – Video
Feb 162015

Denmark shooting: Prime Minister Thorning-Schmidt says 'terrorist attack
A shooting at a free speech debate in the Danish capital, Copenhagen, is being treated as “a terrorist attack”, the Danish prime minister says. Helle Thorning-Schmidt said the attack was “political…

By: World News

View post:
Denmark shooting: Prime Minister Thorning-Schmidt says ‘terrorist attack – Video

 Posted by at 3:41 pm  Tagged with:

First Copenhagen shooting victim identified as film maker – Video

 Free Speech  Comments Off on First Copenhagen shooting victim identified as film maker – Video
Feb 162015

First Copenhagen shooting victim identified as film maker
Danish police shot and killed a man early Sunday suspected of carrying out shooting attacks at a free speech event and then at a Copenhagen synagogue, killing a Danish documentary filmmaker…

By: WTNH News8

Originally posted here:
First Copenhagen shooting victim identified as film maker – Video

 Posted by at 3:41 pm  Tagged with:

Pierre Teilhard De Chardin | Designer Children | Prometheism | Euvolution